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 ADDING COVARIATES TO LOGLINEAR MODELS

 FOR THE STUDY OF SOCIAL MOBILITY*

 THOMAS A. DIPRETE

 Duke University

 Two strategies, linear regression and loglinear models, have enabled sociologists to make

 great progress in the study of social mobility and stratification, but each has deficiencies.

 Linear regression models are insensitive to the multidimensional character of stratification,

 while loglinear models do not easily incorporate independent variables. I propose a class of

 constrained multinomial logit models for the study of social mobility that bridges the gap

 between these two approaches. Parsimony in specifying intercepts is achieved through stan-

 dard methods for parameterizing interaction terms in loglinear and related models of social

 mobility. Parsimony in specifying the effects of covariates is achieved by partitioning co-

 variates into groups within which effects are constrained to be proportional. The resulting

 specification consists of three types ofparameters: (1) a reduced set of intercepts; (2) coefficients

 that convert the effect of each variable in a group into what may be thought of as a single

 group-specific metric; and (3) a set of scores for each group that specifies the impact of the

 group's covariates on outcomes. Examples are provided using data from the 1983 and 1987

 Current Population Surveys.

 T wo approaches to the study of social

 mobility are prominent in the sociological

 literature. The first uses linear regression to

 model outcomes on a single quantitative strati-

 fication dimension as a function of covariates,
 which may measure individual-level resources

 and liabilities or contextual factors. Status at-
 tainment models and earnings functions are
 examples of this strategy. The second approach
 uses loglinear and related (e.g., association)
 models for categorical data to study mobility
 across stratification categories, such as classes
 or occupational groups.

 While these strategies have allowed so-
 ciologists to make enormous progress in the
 study of stratification and mobility, each has
 certain deficiencies as well. Linear regression
 models are insensitive to the multidimensional
 character of the stratification system (Hodge
 1981; Hout 1988, p. 1362 ff.). Loglinear and
 related models overcome this deficiency, but,
 unlike linear regression models, they do not
 allow easy specification of the individual and
 structural determinants of mobility apart from

 * Direct correspondence to Thomas A. DiPrete,
 Department of Sociology, Duke University, Durham,
 NC 27706. I would like to thank Margaret Krecker,
 Michael Hout, Adrian Raftery, and three anonymous
 reviewers for helpful comments on an earlier ver-
 sion of this paper. I would also like to thank Marga-

 the information contained in the marginal dis-
 tributions of origin and destination positions.
 Consequently, a gap exists in the methodologi-
 cal tools available for mobility research. Mod-

 els of social mobility are needed that avoid the
 rigidly hierarchical assumptions of status at-

 tainment or earnings functions while retaining
 the ability of these models to easily incorporate
 individual- and structural-level covariates.

 I propose a class of constrained multinomial
 logit models for multidimensional, partially-
 ordered outcomes that can incorporate individ-
 ual-level and structural effects in addition to
 the vacancy constraints arising from the margi-
 nals of loglinear and related models. These

 constrained multinomial logit models have sev-
 eral advantages over their unconstrained
 counterpart. First, they are more parsimonious.
 Second, maximum likelihood estimates of their
 parameters are usually attainable, even when
 the sample size and pattern of associations
 would cause unconstrained estimation to fail.
 Third, these models can provide a closer link
 between parameter values and generalizations
 about the structure of the mobility process.

 ret Krecker for her assistance in preparing the data.

 This research was supported in part by research funds

 provided by Duke University, and in part by Na-

 tional Science Foundation grant No. SES-90- 12619.
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 ALTERNATIVE MOBILITY MODELS

 Two important tasks of mobility research are
 describing and explaining the probability of
 moving to a particular destination category from
 a particular origin category. With a loglinear
 model, the log of these probabilities can be
 expressed as a linear function of origin effects,
 destination effects, and effects for the interac-
 tion between origin and destination:

 log Pii = u + u1(i) + u20) + u12(ij) (1)

 Parsimony in these models is typically achieved
 by imposing constraints on the interaction terms.
 For example, Featherman and Hauser (1978)
 constructed an informative model by constrain-
 ing interaction effects to be equal within groups
 of cells that are mutually exclusive and exhaus-
 tive of the entire mobility table (see also
 Goodman 1972). Other scholars have shown
 how to express interaction terms through row
 or column scores, which may be imposed a
 priori or estimated from data (Haberman 1974;
 Goodman 1979, 1987).

 Loglinear and related models can provide
 powerful descriptions of the mobility structure,
 but in their usual form they do not incorporate
 covariates that might explain this structure. In
 recent years, however, mobility researchers
 have elaborated these models to include ag-
 gregate-level covariates. For example, in an

 application of the Haberman model to the study
 of intergenerational mobility, Hout (1984) used
 cell averages of substantively interesting vari-

 ables to specify the u12(ij) of equation 1 as

 U12(ij) =bISIS + b2AA + d1D S 2+
 1 1 j2 i j 1 1
 d2DiAI2+ d3DIT. (2)

 where Si, Al, and Ti are the average status, au-
 tonomy and training for individuals in oc-

 cupational category i, and Di is a dummy vari-
 able indicating whether the origin and destina-
 tion category are the same. In a different speci-
 fication with aggregate covariates, Grusky and
 Hauser (1984; see also Hauser and Grusky 1988,
 p. 734) used country-level variables to explain
 cross-national variation- in the parameters of a
 three-dimensional mobility table (origin by
 destination by country).

 Models that employ aggregate covariates pro-
 vide additional insights into the mobility proc-
 ess, but they cannot explain individual-level

 variation in outcomes given a common origin

 position. Perhaps the most straightforward way
 to account for this variation is to add dimensions
 for relevant individual-level covariates to the

 mobility table (e.g., Yamaguchi 1983). This is
 a general solution to the problem, but it is not
 always satisfactory. The use of additional di-
 mensions, particularly for covariates that are
 continuous or have many categories, can sharply
 increase the number of cells in the table (which
 can lead to statistical problems) and the num-
 ber of parameters in the model (which can make
 the results difficult to interpret). Consequently,
 more parsimonious solutions are desirable.

 Logistic and probit regressions models are

 the most widely-known models for qualitative
 dependent variables that can easily include
 individual and structural (possibly continuous)
 covariates. Logistic regression models are
 closely related to logit models, which in turn
 are closely related to loglinear models. Logit
 models can be generalized to multinomial logit
 models to handle dependent variables with more
 than two categories (Fienberg 1980).

 In what is sometimes called a universal multi-

 nomial model, individual-level covariates are
 assumed to affect the category a response vari-
 able falls into. These covariates have the same
 value for all alternatives, i.e., they are "generic"
 in the language of applied discrete choice
 modeling (Hensher and Johnson 1981).l The
 coefficients, on the other hand, are alternative-
 specific. In this formulation, the probability that
 individual "t" will move to destination j' out of
 J possible destinations has the form:

 exp(u.. + xt 13 )
 ptj = pt =i J

 A exp(oui + x, BJ) (3)
 j=1

 where xt is a vector of K independent variables
 for individual t, oc; is the intercept for alterna-
 tive j, and B is a vector of coefficients for alter-
 native j. We can choose OtJ = 0 and BJ = 0 as a
 normalization. To be strictly accurate, the in-
 dex t in equation 3 runs from 1, . . ., T. within
 each origin group i. We can think of t as run-

 I For an example in which covariate values vary
 by outcome, consider a discrete choice problem
 where the outcome categories are various goods that

 could be purchased, and one of the covariates affect-
 ing choice is the price of the alternative goods. For a
 mobility-related model that includes a covariate

 whose value varies by outcome, see DiPrete (1987).
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 ning from 1, . . . T, where T is the sample size,
 if we keep in mind that expressions that depend
 on the origin category apply only to individuals
 who belong to that category.

 Model 3 contains no origin effects, and thus
 would almost never fit mobility data. Its defi-
 ciency can be remedied by including interac-
 tions between covariates (including the inter-
 cept) and origin dummy variables. Logan ac-
 complished this task by specifying the parame-
 ters of equation 1 as functions of individual-
 level covariates, obtaining what he called the
 "Saturated Logistic Multiplicative Model"
 (Logan 1983, p. 328-9).2 An equivalent model
 can be written in terms of the destination proba-
 bilities as

 exp(oii, + Xt iJ,)
 t J

 I exp(oc x + Xt'B /) 1j
 j=1 4

 where the set of origin categories is assumed to
 be the same as the set of destination categories,

 where (cxi = 0 and BIJ = 0, i = 1, . . ., J.
 Even though model 4 is well understood, I

 provide an example for comparison with later
 results. I estimated a model based on model 4
 with data from the 1983 and 1987 January
 Current Population Surveys (U.S. Bureau of
 the Census 1983, 1987). The data for this and
 subsequent examples are for full-time workers
 between the ages of 20 and 64 who changed
 jobs in the previous year, but remained with the
 same employer, and whose origin and destina-
 tion occupations were nonfarm. The origin and
 destination categories I used are: (1) manage-
 rial and professional specialty occupations; (2)
 technical and administrative support occupa-
 tions ("technical-clerical"); (3) sales oc-
 cupations; (4) service occupations; (5) preci-
 sion production, craft and repair occupations
 ("crafts"); and (6) operators, fabricators, and
 laborers ("other blue-collar"). The five inde-
 pendent variables used in this example are race,
 experience, experience squared, education, and
 college.

 Coefficient estimates derived from equation
 4 for male workers only are presented in Table
 1. These coefficients are interpreted in stan-
 dard ways (Aldrich and Nelson 1984). The dif-
 ference between the B coefficients for a par-
 ticular variable (e.g., education) for origin-des-
 tination pair ij and origin-destination pair ij' is
 the estimated effect of a change in one unit of
 that variable on the change in the log-odds of
 moving to destination j as opposed to j' from
 origin i. To conserve space, Table 1 reports
 coefficients only for workers whose origin cate-
 gory was technical-clerical occupations. The
 complete table includes five additional sets of
 coefficients, one for each of the five other ori-
 gin categories.'

 It is difficult to uncover important patterns
 when the model contains so many coefficients
 (180 in this example). The difficulty grows
 when the sample size is not large. Successful
 estimation of model 4 requires an enormous
 amount of data, with a moderate number of
 cases in each cell. With the 1,682 cases in the
 sample, convergence could not even be obtained
 for three of the six origin categories (sales, serv-
 ice, and crafts).4 Moreover, the great majority
 of the estimated coefficients for the other three
 origin categories were not significantly differ-
 ent from zero at conventional standards. Such
 an outcome is common even with much larger
 sample sizes. The problems encountered in this
 example illustrate the limitations of multinomial
 logit models for the study of social mobility.

 CONSTRAINED MULTINOMIAL LOGIT
 MODELS

 An unconstrained multinomial logit mobility
 model can be both difficult to fit and difficult
 to interpret. When the categories have an un-
 derlying order (as in mobility analysis), more
 parsimonious models with more readily inter-
 pretable coefficients may be obtainable.,

 The most widely-known strategy for dealing
 with ordered outcomes is the ordered probit or
 ordered logit model (see Maddala 1983, or
 Miller and Volker 1985 for an application to

 2 Another mobility-related model that includes
 individual-level covariates was proposed by Sobel

 (1985). But in his model the dependent variable was

 a behavioral outcome other than mobility (he used
 fertility, specified as a continuous variable), while

 the independent variables were person-specific
 mobility effects. He specified these effects to be

 functions of individual-level covariates.

 I The definitions of covariates and occupational
 categories appear in Appendix Table 1. Appendix
 Table 2 contains a crosstabulation of origin and des-
 tination occupations for the males and females who
 met the selection criteria.

 I However, the value of the likelihood function
 had stabilized for the first five significant digits. Thus,
 approximate likelihood ratio tests are possible.
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 Table 1. Coefficients From Unconstrained Multinomial LogitModel: Male Same-EmployerJobChangers From Nonfarm
 Origins, 1983 and 1987 CPS

 Destination Occupation

 Origin Professional/ Technical/ Other
 Occupation Managerial Clerical Sales Service Crafts Blue-Collar

 Technical/ Intercept -12.00 -2.37 -4.66 6.42 -4.13 0
 Clerical (-3.9) (-1.0) (-1.4) (-1.3) (-1.4)

 Race -.70 -.69 .19 -1.17 .42 0

 (-.8) (-.8) (-. 1) (- 9) (-.3)

 Experience .08 -.11 -.10 -.26 -.10 0
 (- 1.0) (-1.5) (-1.1) (-.8) (-1.2)

 Experience2/100 -.07 .24 .27 -.40 .28 0
 (-.4) (-1.4) (-1.3) (-.2) (-1.4)

 Education .90 .35 .33 -.35 .33 0

 (-4.3) (-2.1) (-1.4) (-1.0) (-1.7)

 College degree -.59 .14 .75 .90 -.70 0

 (-.6) (-.2) (-.7) (.5) (-.7)

 Note: For the full table, N = 1682; approximate log-likelihood = -2177.2. Values in parentheses are t-statistics. Entries
 lacking t-statistics are fixed by design.

 mobility analysis). According to a common
 interpretation, these models assume a latent
 continuous dependent variable. The researcher
 observes which of several mutually exclusive
 and exhaustive intervals (whose end points are
 unknown) the dependent variable falls into. The
 model provides parameter estimates that are
 asymptotically equivalent to the estimates that
 would be obtained if the latent variable could
 be measured directly.

 Ordered logit or probit models would be suit-
 able for mobility research if occupations could
 be ranked on a single dimension (presumably
 something other than status or earnings, since
 more efficient estimates could be obtained us-
 ing these observed quantities directly as de-
 pendent variables). However, the assumption
 underlying the ordered logit or probit model is
 too restrictive for mobility analysis: while oc-
 cupations are ordered, these orders are multidi-
 mensional in character.' Furthermore, as we
 shall see, both the orders and the distances be-
 tween occupations are generally a function of
 one's origin occupation.

 To simplify the exposition, I first consider
 models for mobility from a single origin cate-

 gory. Suppose that the parameter vectors B.,

 j = 1, . . ., J for the alternative outcomes in
 equation 3 are linearly related to a smaller under-
 lying set of parameter vectors (Anderson 1984).

 Specifically, the vector of parameters for each
 destination might be assumed to be parallel to
 each other. This constraint can be expressed as

 Bi= OJB (5)

 Anderson proposed the term "stereotype ordered
 regression" (SOR) for a logistic regression
 model based on this constraint. The SOR con-
 straint forms the basis for a variety of con-
 strained multinomial mobility models.6

 Using the constraint in equation 5, the log
 odds of moving to destination j as opposed to j'
 can be expressed as

 P ~~K
 log tj = 00j-0) )E BkXtk(6

 P ~~k=O k k(6)

 where xt0 = 1,t= 1, . . ., T and the ongin index
 "i" is.suppressed since the subsample members
 under consideration are in the same origin cate-
 gory.

 I These orderings are also incomplete, since the
 occupations contained within any particular occupa-
 tional category are inevitably heterogeneous with
 respect to status, earnings and other attributes. Con-
 sequently, the distribution for any attribute in cate-
 gory j will typically overlap the distribution for the
 same attribute in category j'.

 6 The SOR constraint can be used in a multinomial
 probit or other multinomial model as well. I focus on

 the multinomial logit model because of its computa-
 tional advantages and its relationship to loglinear
 and association models.
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 In this formulation, the covariate coefficients

 (Bk, k = 1, ... . K), can be interpreted as factors

 that convert the K covariates to a common

 metric. If each of the variables in the equation

 could be conceptualized as a resource, for ex-

 ample, this metric might be referred to as the

 metric of "generic" resources (or liabilities).

 The effect of a unit increase in education on the
 log odds of moving to destination j as opposed

 to j' could then be interpreted as equivalent to

 the effect of Beduc units of some generic resource.
 In the metric of generic resources, this effect
 equals the difference between the scores for

 destinations j and j' (0J - 0j ).
 This way of interpreting the model parame-

 ters does not necessarily imply that the grouped
 covariates are indicators of a latent variable.
 One need only assume that the direction of their
 impact (the order and relative distance between
 response categories imposed by the group of

 covariates) is the same. However, such a pro-
 portionality constraint on the effects of the
 covariates might imply the existence of a latent
 composite variable that affects the respondent's
 destination category (see Hauser and Gold-

 berger 1971, and Hauser, Tsai, and Sewell 1983
 for a structural equation model that contains a
 latent composite variable).

 Another interpretation of the 1 scores can be
 obtained by dividing both sides of equation 6

 by (0J- -J,):

 log tj K

 kJ=O ,1ktk
 (0J- Oj) (7)

 In effect, the (O - O) factor rescales the log

 K

 odds implied by X1Bkxtk for each pair of occu-
 k=O

 pational categories (I, j').7 But while the re-
 scaled logits are linear functions of B, the logits
 themselves are multiplicative, not linear, func-
 tions of the model parameters.

 Model 6 is not identified unless a normaliza-
 tion is imposed. The overabundance of para-
 meters in model 6 is easily seen by setting J=2
 and K=3. In that case, the familiar logistic re-
 gression would be

 log -B0 = +B xt +B2x2 +B3x3 (8)
 PtJ,

 7A reviewer suggested this "resealed logit" inter-
 pretation.

 where j = 1 and j' = 2. A comparison of equa-

 tions 6 and 8 shows that both 1 coefficients are
 superfluous.

 There are two strategies for normalizing the

 o vector. The first, which is analogous to the
 common normalization for the multinomial logit

 model (see equation 3), fixes a zero point and a

 "unit" distance for the o scores in terms of which
 other distances can be measured. To carry out

 this normalization, one might set OJ = 0, and
 o1 = 1. In the examples here, (where group 1 is
 professional-managerial and group J is other

 blue-collar) this would set the "distance" be-
 tween professional-managerial and other blue-

 collar occupations (roughly the top and the

 bottom of the status hierarchy) equal to one

 unit. Since mobility between these two groups

 is relatively rare, most other estimated distances

 would be smaller. Alternatively, one might set

 the distance between a pair of "neighboring"
 occupational categories equal to one unit (e.g.,

 one might set oher blue- = 0 ando = ).
 This would cause most other distances to ex-

 ceed one unit. A second strategy, which is analo-
 gous to Goodman's (1979) treatment of asso-
 ciation models, imposes a linear constraint on

 the sum of the o scores (e.g., 1o = 0), and a
 constraint on the magnitudes of the scores (e.g.,

 Eo2 = 1). Other normalizations are possible,
 and more complex normalizations are required
 with more complex models.

 While both model 6 and the common ordered

 logit model are "one-dimensional," they are not
 equivalent. The "natural" logits corresponding

 to the ordered logit model compare E ,, pJ with
 I <J pJ, for any j', while the "natural" Qogits cor-
 responding to multinomial logit models (regard-

 less of whether they are constrained as in equa-

 tion 6) compare pJ and p3J for any (j, j') pair. The
 "natural" latent structure interpretation of the
 ordered logit model involves a latent depend-
 ent variable, while the "natural" latent struc-
 ture interpretation of the SOR model involves a
 latent composite independent variable. (Differ-
 ences between these models are discussed at
 greater length in the Appendix.)

 While the model based on the constraint of
 equation 5 has a simple interpretation, it may
 be too parsimonious to fit the data adequately
 in a substantive application. For instance, equa-

 tion 6 contains the problematic assumption that
 the baseline logits (in which all covariates are
 set to zero) equal a simple multiple (13) of dif-
 ferences between the same o scores that apply
 to the covariates. One way to relax the con-
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 straint in equation 5 is to introduce a set of
 unconstrained intercepts into equation 6:

 P K
 log p = ((XJ- aJx) + I (Oj - j')kxk (9)

 Ptj' k=1~

 This model has two distinct score vectors: ox
 specifies the intercepts, while o specifies the
 effects of the other covariates on outcomes. The
 intercepts are typically normalized by setting
 oc = 0, though, again, other choices are pos-
 sible.

 Panel A of Table 2 illustrates this specifica-
 tion, obtained through maximum likelihood
 analysis of equation 9 applied to male techni-
 cal-clerical workers changing jobs but remain-
 ing with the same employer.8 The most highly
 ranked occupational group is professional-

 managerial (0 = 1), followed by sales (o = .48),
 technical-clerical (o= .36), crafts (o= .23),
 other blue-collar (o = 0) and service (o = -.35)
 in that order. The probability that a worker will
 end up in a more highly ranked (by the scores)
 of any pair of occupations increases with both
 education and experience (the latter effect being
 somewhat curvilinear). In addition, the model
 includes a set of baseline intercepts that need
 not reflect the hierarchy described by the re-
 source scores. A likelihood ratio tests shows
 that, relative to model 3, model 9 provides a
 reasonable fit to the data (L26 = 27.6). A com-
 parison of BIC scores (Raftery 1986a, 1986b)
 shows model 9 (BIC = -59) to be superior to
 model 3 (BIC = 0).

 Equation 9 uses different normalizations for
 the intercept scores and the resource scores.
 While only the J-th o is fixed, equation 9 ap-
 pears to imply a constraint on both the order
 and the distance between the first and last re-
 source scores, because the former is fixed at 1,
 while the latter is fixed at 0. But the normaliza-
 tion used for the 1 scores is actually no more
 constraining than that for the o scores. The
 specification of a unit distance between the top
 and the bottom category is completely general,
 since the o scores only determine relative dis-
 tances among categories. One can extract a
 common scale factor from the components of

 the B vector to convert these relative magni-
 tudes to absolute magnitudes. Furthermore, the
 apparent order of the resource scores can be
 maintained or reversed according to the sign of
 the corresponding 13 coefficient.

 The different ways that the ox and o vectors
 were normalized in equation 9 suggests that
 alternative normalizations are possible. As it
 stands, rescaled (by B) covariates weigh on the

 o dimension, while an "unrescaled" constant
 ("1") weighs on the o dimension. Equation 9
 could be written differently as

 P K
 log t = (c-XJ) OC4 +X (OJ -J)13kXtk (10)

 ti,

 Here, Bo functions as a conversion factor, as do
 .1 1 32 . . . 5BK .This formulation requires a dif-
 ferent normalization. For example, ox could be
 set to 1, and ocJ set to 0, so that the normaliza-
 tion of the two dimensions would be identical.
 But a little reflection reveals that conversion
 factors make sense only when more than one
 variable is weighing on a common dimension.
 If only one variable is weighing on a particular
 dimension, its natural metric can be used, and
 its 13 coefficient is superfluous. The general
 principle is that a set of J- 1 distinct scores can
 be employed whenever the applicable variables
 are measured in a metric natural to one variable
 in the group. The 13 coefficient for the variable
 that supplies the metric would normally be set

 to unity, analogous to the treatment of Bo in
 equation 9. Applying this logic, a treatment of
 the resource scores analogous to the treatment
 of intercepts in equation 9 is obtained:

 P

 log " = (OcJ- ad + (O - Od XI +
 tJ K

 X (? - O kX(

 where only (xi and OJ are constrained. This speci-
 fication provides a kind of standardization for
 the covariate effects within the group, with the

 variable that supplies the metric (x, in equation
 11) being the "scale referent."9 The p scores
 describe the effect of these standardized co-
 variates on the outcome.

 These three alternative specifications (equa-
 tions 9, 10, and 11) are algebraically equiva-
 lent; the choice of model can be based on their

 9 A reviewer suggested this terminology for equa-
 tion 1 1.

 8 Estimates were calculated using an algorithm
 that switches between the Bermdt, Hall, Hall, and
 Hausman method (1974) and the Broyden, Fletcher,
 Goldfarb, and Shanno method (see Dennis and Schna-
 bel 1983). The algorithm was programmed in
 GAUSS386 by the author, and is available upon
 request.
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 Table 2. Coefficients of Selected Models: Same EmployerJob Changers From Technical/Clerical Origins: 1983 and 1987
 CPS

 Male Male and Female

 Panel A (Model 9) Panel B (Model 11) Panel C (Model 13) Panel D (Model 15)

 Inter- Inter- Inter- Inter- Male

 cepts Effects cepts Effects cepts Effects Effects cepts Scores Effects

 Destination a P a 0 a 0, 20 a 2 01

 Professional/ -13.41 1 -13.41 .88 -9.09 1.82 3.59 -10.29 -1.71 1
 managerial (-4.4) (-4.4) (4.1) (-4.5) (1.2) (1.5) (-5.4) (-5.0)

 Technical/ -4.00 .36 -4.00 .32 -.35 1.87 1.45 -1.70 -2.09 .39
 clerical (-4.4) (3.0) (-4.4) (2.3) (-.2) (1.9) (.9) (-1.1) (-6.7) (4.3)

 Sales -6.86 .48 -6.86 .42 -4.1 1.19 1.68 -5.03 -1.00 .46

 (-1.9) (2.6) (-1.9) (2.3) (-2.1) (1.5) (1.3) (-2.6) (-2.4) (3.6)

 Service 2.96 -3.5 2.96 -3.1 .54 1 0 -1.20 -0.74 .047
 (.8) (-1.0) (.8) (-1.1) (.2) (-.5) (-1.3) (.2)

 Crafts -3.22 .23 -3.22 .20 -3.87 0 1 -3.94 0.28 .29
 (-1.5) (1.6) (-1.5) (1.4) (-1.9) (-2.1) (0.6) (2.2)

 Other blue-collar 0 0 0 .0 0 0 0 0 0 0

 Covariates B B 'y 6 B

 White -.20 -.23 -.47 .18 .26
 (-.3) (-.3) (- 1.3) (.8) (.6)

 Male -1.30 .14

 (-2.2) (.3)

 Experience .21 .23 -.035 .035 .093
 (2.5) (2.2) (-.9) (1.4) (2.1)

 Experience2/100 -.0029 -.0033 5.46 -4.93 -.13
 (- 1.7) (- 1.5) (0.7) (- 1. 1) (- 1.2)

 Education .88 1 -.016 .23 .84
 (4.1) (-. 1) (1-8) (6.1)

 College degree -.72 -.82 .094 -.20 -.76
 (-.9) (-.)(3) (1. 1) (-1.5)

 Number of cases 220 220 812 812

 Log-likelihood -321.7 -321.7 -934.8 -938.5

 Note: Values in parentheses are t-statistics. Entries lacking t-statistics are fixed by design. See text for additional details.

 ability to reveal meaningful aspects of the
 mobility process. Estimates from equations 9
 and 10 will be identical except for the inter-

 cepts. In contrast, estimates of the m and B vec-
 tors using equation 11 will differ from the analo-
 gous estimates using equation 9 or 10.

 Panel B of Table 2 displays results using
 equation 11 for the same data. Years of educa-
 tion is the scale referent. The point estimates
 indicate that a year of experience is "worth"
 about 1/4 of a year of education for relatively
 young men, and progressively less for older
 workers. While the effects of race and college
 are not significant in this model, the point esti-
 mates imply that being white "costs" about 1/4

 year of education, while college "costs" about
 4/5 of a year of education. The scores in panels
 A and B are slightly different, while the in-
 tercepts are identical, as they should be. The
 log-likelihood values for the two models are
 also identical. In this case, the covariate co-
 efficients and scores in panel B are similar to
 those in panel A because the unconstrained
 effect of education in panel A (.88) is close to
 its constrained value in panel B (1.0). Gener-
 ally speaking, however, the choice between
 these two specifications depends upon whether
 clarity is best achieved by expressing all ef-
 fects in "units" of a year of education (or some
 other covariate), or by scaling the 4 scores such
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 that the "distance" between two given occupa-
 tional groups (in this case professional-mana-

 gerial and other blue-collar) equals unity.

 ELABORATION OF THE BASIC MODEL

 Models 9 or 11 provide appealingly simple
 descriptions of the mobility process. However,
 these highly constrained models may not pro-
 vide acceptable fits to the data. If the fit is poor,
 the analyst must reduce the number of con-
 straints by increasing the number of dimensions
 of scores. Two strategies are available. Ander-
 son (1984) suggested using multiple dimensions
 of scores for each covariate. An alternative strat-
 egy, which may provide more interpretable
 results, uses separate dimensions for mutually
 exclusive subsets of covariates. I discuss each
 of these strategies below.

 Anderson suggested that the researcher spec-

 ify a higher dimensional solution when the one-
 dimensional solution does not fit. For the two-
 dimensional solution, the following relation-
 ship holds among the parameter vectors:

 BJ = y1j' + 02j6 (12)

 where the following set of constraints is one
 possible normalization:'0

 ?12 = 1J. = ?21 = ?2J = 0

 ?11 = ?22 = 1

 This formulation can be expanded to three-
 dimensions and beyond. Each expansion in-
 creases the number of constraints needed to
 normalize the resource scores, even though it
 reduces the constraints on the B vectors, j =
 1, . . ., J. When the number of dimensions equals
 the minimum of J- 1 and K (where J is the
 number of destinations and K is the number of
 covariates weighing on the resource scores),
 the resulting pattern of constraints yields a dif-
 ferent form of the multinomial logit model.

 One interpretation of model 12 is that each
 covariate contains two conceptually distinct
 types of resources (alternatively, each variable
 weighs on two distinct latent composite vari-
 ables). The y vector extracts the first dimen-
 sion, while the 6 vector extracts the second
 dimension. Each resource type has a distinct
 directional impact on mobility outcomes, as

 10 An alternative normalization is E<, = 1 2=
 X1002 = O; 1,12 = X402 2= 1.

 described by the corresponding set of resource
 scores. The effect of the first dimension of re-
 sources on the probability of transition from j
 to j' depends on the first dimension of scores
 ( ), while the effect of the second dimension
 of resources on the probability of transition

 depends on the second dimension of scores (?2)-
 Finding a substantive interpretation for these
 dimensions, however, might be difficult. The
 more complicated normalization also creates
 difficulties of interpretation. These difficulties
 increase as additional dimensions are included
 in the model.

 Including women in the analysis and adding
 gender to the list of covariates illustrates the
 potential value and attendant difficulties that
 might arise from such a model. The fit of model
 9 to the data for both genders is much worse
 compared with the fit of model 3 than was the
 case when only men were in the sample (L 20 =
 104.5, estimates not shown), though the BIC
 score (-29.5) favors the more parsimonious
 model over the unconstrained multinomial logit
 model. The fit is poor because the gender ef-
 fects on the log odds of moving to j as opposed
 to j' for each (j, j') pair are not proportional to
 the effects for the other variables in the model.

 The fit is improved substantially by using the
 constraint found in equation 12 to allow for
 two distinct dimensions of scores:

 P K
 log t' = (uJ- uJ) +X (4'j -? ')'kXtk +

 t) K

 I (02j -2j') 6kXtk (13)

 where xt in this case consists of race, experi-
 ence, experience-squared, education, college
 and gender. In applying model 13, I equated
 the scores of service and other blue-collar oc-
 cupations on the first dimension, and set the
 distance between crafts and these two groups
 to be one unit. I equated the scores of crafts and
 other blue-collar occupations on the second
 dimension, and specified the distance between
 service and these two groups to be one unit.
 This specification allows the effects of covari-
 ates on outcomes to work through two distinct
 sets of distances among occupational groups.
 Results are presented in panel C.

 Model 13 fits the combined male-female
 sample better than model 9 (L 2 = 31.6, BIC =
 -49). The effect of gender is much larger on
 the first dimension of this model than on the
 second. On the first dimension, being male in-
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 creases the odds of moving to a craft or other
 blue-collar job relative to other destinations.
 On the second dimension, the effect of gender
 is not significant. Education's effect, in con-

 trast, is located primarily on the second dimen-
 sion, where the distance between professional-
 managerial and other occupations is larger than
 on the first dimension. The effects of race and
 experience have opposite signs on the two

 dimensions.
 But model 13 is unsatisfactory for both sta-

 tistical and theoretical reasons. None of the
 estimated scores is significantly different from
 zero at the .05 level. Aside from the gender
 effect on the first dimension and the education
 effect on the second dimension, none of the
 covariate coefficients are significant at even the
 .10 level. Model 13 is theoretically unsatisfy-
 ing, too. A reasonable hypothesis in this case

 might be that gender's effect on outcomes is

 expressed on a different dimension than the
 effects of the other covariates. But model 13
 divides the effects of every covariate along two
 distinct dimensions. The interpretation of these
 separate dimensions is not obvious, and the
 overall effect of education, experience, or gen-
 der on outcomes is not easy to determine with-
 out additional algebraic computation." For
 some problems this model, in which the effects
 of covariates operate through two distinct la-
 tent composite variables, would follow natu-
 rally from theory. But in the current case, the
 poor fit of model 9 is due primarily to gender's
 unique pattern of effects on outcomes, not to
 the failure of a unidimensional specification for
 education or experience.

 An alternative modeling strategy, analogous
 to the earlier special treatment of the intercepts
 in models 9, 10 and 11, is to restrict variables
 from weighing on more than one dimension of
 scores unless theory justifies a more complex
 specification. With this strategy, parsimony is
 achieved by grouping variables that measure
 similar resources or that otherwise have similar
 effects on the dependent variable. The number
 of score vectors increases with the number of
 groups. When the number of groups equals the
 number of covariates (i.e., each covariate is the

 sole member of its group), then all of the B pa-
 rameters would be normalized to unity (com-
 pare the treatment of B0 in equation 1 1), and the
 resulting specification would be identical to the
 multinomial logit model.

 This strategy can be implemented in more
 than one way. For example, one might hypothe-
 size that "ascription" variables such as race and
 gender work differently than "achievement"
 variables such as education and experience. This
 implies that

 p K-2

 log tj = (a.-a.,) +X1 -(Olj ?j)Bxtk +
 K

 X ( 2j02j )BkXtk (14)

 where ? l is the score vector for "achievement"
 covariates, ?2 is the score vector for "ascrip-

 tion" covariates, xtK- is race, and xtK is gender.
 The @ scores can be normalized by setting OJ =

 ?2J= 0 and ?11 = ?21 = 1. Alternatively (and
 perhaps more realistically), one might specify
 the race effect to be proportional to the effects
 of other variables in the model, but the gender
 effect to be nonproportional.

 p K-1

 log tj = (a.-aY,).+ (OXJ@ 0j')Bxtk +
 tj'

 (?2; _02j')gKXtK (1l5)

 The normalizations in equation 15 are the same
 as in equation 14, except that BK instead of ?21
 can be specified to equal 1, because the second
 group of covariates now consists only of the
 gender variable.

 Panel D provides estimates for model 15, with
 BK set to unity. This model fits better (in a BIC

 sense: L 16 = 38.9, BIC = -68) than model 13.12
 The effects of education and experience are
 easier to interpret in panel D than they are in
 panel C (the overall pattern is similar to that of
 panel A). Furthermore, the gender effects are
 easily interpreted - male technical-clerical
 workers changing their jobs with the same em-
 ployer are less likely to move to a nonmanual
 occupation and more likely to move to a man-
 ual occupation than are female workers. While

 I Additional interpretive difficulties, related to
 the more complex normalization required, might be
 alleviated somewhat by using an alternative normali-

 zation. But the model would still be unsatisfactory
 without a plausible interpretation of the two resource
 dimensions on which each of the covariates is pre-
 sumed to weigh.

 12 Models 13 and 15 are not nested, and so likeli-
 hood ratio tests are inappropriate. However, the BIC

 scores of models 3, 9, 13, and 15 can be compared.
 The L2 reported in the text compares model 15 to
 model 3.
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 this result superficially resembles that for the
 other covariates (with female gender consid-
 ered a resource), the occupational distances
 implied by the gender effect are very different
 from the distances implied by the other five
 covariates in the model (compare the second
 and third columns of panel D).

 Interaction effects can enter these models in
 two ways: they can affect the covariate coeffi-
 cients, and they can affect the pattern of scores.
 An elaboration of equation 15 can illustrate
 these possibilities. Because the CPS does not
 provide an exact measure of work experience,
 the examples of this paper use a standard proxy
 (age - education - 5), which might more accu-
 rately be called potential experience. But many
 women withdraw from the labor force at some

 point to bear and raise children, so this measure
 has a weaker relationship with actual experi-
 ence for women than for men. An interaction
 between gender and experience might there-
 fore be warranted to take account of this meas-
 urement problem. With its inclusion, equation
 15 becomes:

 p K-i

 log tj =(a-ad) +X(? +j)kXtk

 (02j 02j')6KXtK

 (O1J-01j')fK+1Xtk'XtK ( 16)

 where k' is the index for the experience vari-
 able, and K is the index for gender. Broadly
 speaking, equation 16 implies that the resource
 scores for covariates (aside from the gender
 covariate) have the same value for men and
 women, but that the conversion factors for

 (some) covariates are gender-specific.
 To illustrate the second type of interaction,

 one might argue that men and women differ
 not in conversion factors, but in the effect of
 these converted covariates (equivalently, the
 effect of the latent composite variable) on out-
 comes. This hypothesis would be expressed in
 terms of interactions between gender and the
 resource scores of equation 15:

 P.
 log tj = (C_--.,) +
 P
 tj' K-I

 I [(Ojj-0-j) + (Wlj-Nwlj,)x K]kxk + k=1 Ij I) 1 j)tK k tk+

 (?2j 02j')PKXtK ( 17)

 Here xtK is the gender variable, and the Mr. vec-
 tor of scores contains the gender-specific in-

 crements to the 41 vector of scores. In effect,
 specification 17 contains two different sets of
 scores, one for males and one for females.'3

 Finally, it is possible to specify and estimate a

 model that contains gender interactions with
 covariate coefficients and gender interactions

 with scores.

 It is not necessary for a particular covariate

 (gender, in this example) to interact with all the
 components of a score vector. More restricted
 interactions are also possible. For example,

 mobility analysts generally argue that "immo-
 bility effects" at both the individual and cate-

 gory level are necessary to account for the diag-
 onal frequencies of a mobility table (e.g., Logan

 1983; Hout 1984). While the aCI parameter in
 the above models is a measure of immobility
 when j = i (the origin category),'4 these speci-
 fications do not take account of the possibility
 that a particular individual-level variable such
 as experience might have a distinctive immo-
 bility effect. To allow for this possibility, we
 can include an interaction between experience

 and the score for the origin category of each
 respondent in equation 9:

 P K
 log tj = (X-,) + I (? 4-0')x+tk P i i ~k-i jikt

 tj

 (try hi] -8r,_ 8,j)Xtk' (18)

 where k' is the index for the experience vari-

 able, and 6,, = 1 if j = i (the origin category), 0
 otherwise. An example of an experience-origin
 interaction is presented later.

 SIMULTANEOUS ESTIMATION WITH
 MULTIPLE ORIGIN CATEGORIES

 The models discussed to this point pertain to a

 single origin category. One way of analyzing
 the entire sample is to estimate the above mod-

 els separately for each origin category. This
 straightforward elaboration occasionally may
 be the only strategy that yields a good fit and a

 However, the constraints on the Ny, vector are
 not the same as those on the @, vector. While equa-
 tion 17 implies that @,, = 1, there is no comparable

 restriction on A,,. In other words, the specification
 in equation 17 allows the distance between scores

 for destinations 1 and J to be different for males and
 females.

 4 Because the sample is limited to job changers,
 immobility does not have the same interpretation

 here that it would have in an analysis of the com-
 plete sample.
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 Table 3a. Interaction Effects and Scores from Unconstrained Intercepts Model: Male Same-Employer Job Changers from

 Nonfarm Origins, 1983 and 1987 CPS

 Destination Occupation

 Origin Professional/ Technical/ Other
 Occupation Managerial Clerical Sales Service Crafts Blue-Collar

 Interaction Professional/ -8.29 -3.91 -5.10 1.70 -1.99 0
 Effects managerial (-4.5) (-2.6) (-3.2) (.8) (-1.3)

 Technical/ -10.21 -3.90 -6.55 -.018 -3.00 0
 clerical (-5.7) (-2.7) (-4.3) (-.0) (-2.0)

 Sales -9.38 -5.14 -4.18 .18 -2.45 0

 (-5.1) (-3-4) (-2.7) (.1) (2.1)

 Service -7.50 -5.74 -7.58 -.68 -2.67 0

 (-5.6) (-5.3) (-6.2) (-.8) (-3.8)

 Crafts -7.34 -5.13 -7.00 -2.95 -1.60 0

 (-6.9) (-4.3) (-6.2) (-3.6) (-2.6)

 Other blue-collar -8.53 -6.13 -7.57 -3.37 -2.66 0

 (-6.6) (-6.2) (-6.9) (-4.3) (-4.4)

 Resource Nonmanual 1 .46 .59 -.14 .28 0

 Scores (4.7) (6.7) (-.6) (2.4)

 Manual 1 .68 .84 .21 .31 0

 (6.5) (6.5) (1.8) (3.8)

 theoretically satisfying model. If the underly-
 ing mobility structure allows simplification,
 however, it is possible to achieve significant
 gains in parsimony by constraining either the
 covariate coefficients or the resource scores (or
 both) across origin categories.

 For example, one might constrain resource

 scores to be the same across all origin catego-
 ries while allowing the conversion factors to
 vary by origin:

 P. K
 log I =- (.j-.uij.) + 1 (Oj.-j')k.xtk (19)

 tij' -

 where i indexes origin categories, j indexes
 destination categories, K is the number of co-
 variates, and the i subscript on each B reflects
 the existence of J distinct B vectors.

 An alternative specification allows resource
 scores to vary across origin categories while
 fixing the conversion factors:

 P. K
 log J = (a..j-aJ,) +X .- (Oij ?ij')kXtk (20)

 tij' -

 where the i subscript on each @ reflects the ex-
 istence of J distinct o vectors.

 A third strategy imposes constraints on both
 resource scores and conversion factors. As an
 example, the following model constrains the
 resource scores for nonmanual workers to be
 the same regardless of origin category, and

 Table 3b. Covariate Coefficients from Unconstrained Inter-

 cepts Model: Male Same-EmployerJob Changers
 from Nonfarm Origins, 1983 and 1987 CPS

 Covariate Coefficients

 Covariate Nonmanual Origin Manual Origin

 White .16 .89
 (.3) (2.1)

 Experience .12 -.072
 (2.8) (-2.1)

 Experience2/100 -.15 .17
 (-1.4) (2.0)

 Education .68 .50

 (6.5) (5.5)

 College degree -.076 .65

 (-.2) (1.3)

 Note: For the model illustrated by Tables 3a and 3b, N =

 1682; log-likelihood = -2252.1. Values in parentheses are t-

 statistics. Entries lacking t-statistics are fixed by design.

 imposes a similar constraint for manual work-

 ers. It imposes analogous constraints on the
 covariate coefficients, so that there is one set

 for nonmanual workers and another for manual

 workers. The resulting specification, which

 might be termed a white-collar/blue-collar
 model, is

 P K
 log tIj = (0c _Ocu,) + I, (4 -J ,)BkXtk (21)

 P., k-i Si sJ
 ti],
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 where s = 1 for nonmanual workers and s = 2
 for manual workers.

 Tables 3a and 3b provide an illustration of
 this model for males in the sample. While it
 was not possible to estimate all parameters of

 the unconstrained multinomial logit model with
 these data (see the discussion of Table 1), es-
 timation of equation 21 poses no problem. This
 model provides an acceptable fit to the data
 compared to model 4 (L32 = 149.9, BIC =
 -830.6). Furthermore, the resource scores and
 covariate coefficients have ready inter-
 pretations.15 For example, the estimates reveal
 systematic differences in the impact of indi-
 vidual covariates on outcomes for nonmanual
 and manual job changers (Table 3b). Being
 white (or its unmeasured correlates) appears to
 be a resource for manual workers, but not for
 nonmanual workers. Experience protects non-
 manual job changers from falling in the hierar-
 chy defined by the resource scores, and it in-
 hibits upward movement from manual origins.
 Professional-managerial and other nonmanual
 destinations are further apart on the nonman-
 ual-origin hierarchy than on the manual-origin
 hierarchy; this implies that resources have
 greater influence on the odds of moving to
 professional-managerial vs. a lower nonman-
 ual destination for workers from nonmanual
 origins than they do for workers from manual
 origins.'6 Even if it had been possible to esti-
 mate the unconstrained multinomial logit model
 with these data, it would have been difficult to
 discern such patterns fromrthe huge number of
 coefficients produced. In contrast, estimation
 using equation 21 makes such patterns com-
 paratively clear.

 ACHIEVING PARSIMONY IN THE
 SPECIFICATION OF INTERCEPTS

 The models discussed to this point achieve
 parsimony by reducing the number of parame-
 ters required to describe the effects of covari-
 ates on outcomes. However, the models of the
 previous section still contain J(J-1) distinct in-
 tercept parameters (J-1 for each origin cate-

 gory) in addition to the scores and covariate
 coefficients. Clearly, it would be desirable to

 reduce the number of intercept parameters,

 especially if such a reduction produced addi-
 tional insights into the structure of mobility.
 The natural way to achieve this goal is to take

 advantage of the correspondence between inter-
 cepts and effect parameters in loglinear and

 related mobility models.

 For illustrative purposes, I will reparameter-

 ize model 21. Eliminating the covariates from
 model 21 produces:

 P
 log '' = (uJ-u,) (22)

 The logits on the left side of equation 22 can
 also be expressed as functions of the u terms of

 a standard loglinear model (e.g., Fienberg 1980).

 log(mj/mij) = log(PJ/Pj) = oe~j

 = U2t?) II 2(J) + II 12(ij) II 2(0J)

 = 20) + W12(ij)

 Several well-known techniques can be used to
 reduce the number of u terms needed to de-

 scribe a mobility table (e.g., Hout 1983). These
 same techniques can be used to reduce the

 number of ox terms, by expressing the ox terms
 as functions of the reduced set of u terms.

 As an example of such a reduction, I apply
 the strategy employed by Featherman and
 Hauser (1978, pp. 147-50) in their study of inter-
 generational mobility. Featherman and Hauser
 proposed a mutually exclusive and exhaustive

 partition of the interaction terms in the satu-
 rated loglinear model into R categories, where
 Hr. r = 1, ... . R is the set of ij indices for the
 interaction terms in the r-th partition. They
 specified the loglinear model in terms of this
 partition as follows:

 log mj= u + uI(,) + u2(j) + I12(r)

 where u12(j = u12r) for ij e Hr9 and , j Ur =
 u rfr = 0 where f is the number of cells located
 in the r-th partition. We can specify O(xI in terms
 of these reparameterized u terms:

 Uoc = w2 ) + U12(rj) -U12(rj) (23)
 15 A more thorough discussion of the results from

 this and related models can be found in DiPrete and
 Krecker (unpublished).

 16 This statement applies to the latent resources
 composite, not necessarily to the measured covari-
 ates themselves, since the covariate coefficients for
 the two strata can differ. In order to assess the valid-
 ity of this statement when applied to the measured

 covariates, one could estimate a version of equation
 21 in which the conversion factors were constrained
 to be the same for nonmanual and manual origins.

 This more tightly constrained model does not fit these
 data as well as equation 21.
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 Table 4a. Interaction Effects, Destination Effects, and Scores from Constrained Intercepts Model, Including Category Per-

 sistence Interaction with Experience: Male Same-EmployerJob Changers from Nonfarm Origins, 1983 and 1987

 CPS

 Destination Occupation

 Origin Professional/ Technical/ Other
 Occupation Managerial Clerical Sales Service Crafts Blue-Collar

 Interaction Professional/ 2.01=1 .19=4 4 -1.44=6 5 6
 Effects managerial (11.2) (2.7) (-8.4)

 Technical/ 4 1.35=2 4 6 5 5
 clerical (11.6)

 Sales .86=3 -.37=5 1 6 5 6

 (7.0) (-6.2)

 Service 5 5 6 1 5 4

 Crafts 5 4 5 5 2 4

 Other blue-collar 5 4 5 4 3 2

 Destination .26 :..19 -.15 -.52 .14 .46
 Effects (2.8) (-2.1) (-1.5) (-4.4) (1.5) (6.6)

 Resource Nonmanual 1 .40 .53 -.43 .19 0

 Scores (3.6) (5.3) (-2.1) (1.4)

 Manual 1 .70 .89 .19 .34 0

 (6.7) (8.3) (1.7) (4.3)

 where r. is the partition containing the ij cell.
 This new parameterization gives J-1+R-1 dis-
 tinct parameters for equation 22 instead of J(J-
 1). If R-1 is much smaller than (J-1)(J-1), a

 substantial reduction in the number of parame-
 ters needed to specify the model results.

 The parameter reduction for model 21 was
 achieved by excluding all covariates from the
 model. If covariates are present, the value of
 intercepts may change substantially, altering the
 simple relationship between the intercepts and
 the loglinear parameters discussed above. There
 is, however, a simple solution to this problem:
 Express the covariates for each individual in
 the sample as deviations from sample means
 for the individual's origin category. Using these
 deviations, equation 21 becomes

 P K
 log " = ((x.ij-ox.') +X p (+Sj ?Sj)ks(xtk ik+

 K 'l '?S ?Jk-iSJ~SJ)k(1

 K K

 Pt 'J k-i =1ik ' k- SJ
 K

 I~ (OSj-?Sj,)Bks(x-ik)

 K

 = ( ) +O (?sj ?ks(X kst (d '(id+ ' ( k-i J J)Bkstk (24)

 Table 4b. Covariate Coefficients from Constrained Inter-

 cepts Model: Male Same-Employer Job Changes

 from Nonfarm Origins, 1983 and 1987 CPS

 Covariate Coefficients

 Covariate Nonmanual Origin Manual Origin

 White .21 .91
 (.5) (2.3)

 Experience .13 -0.79

 (3.2) (-2.2)

 Experience2/100 -.17 .16

 (-1.7) (1.9)

 Education .57 .48

 (5.2) (5.9)

 College degree .023 .69

 (.1) (1.5)

 Persistence -.014 -.011

 (-2.0) (-1. 9)

 Note: For the model illustrated by Tables 4a and 4b, N =

 1682; log-likelihood = -2261.2. Values in parentheses are t-

 statistics. Entries lacking t-statistics are fixed by design.
 Entries in bold type describe the pattern of constraints. See
 text for details.

 where s = 1 if the origin is a nonmanual occu-
 pation and s = 2 if the origin is a manual occu-
 pation, xkk is the mean for the k-th covariate for
 the i-th origin group, xtk is the deviation from
 the appropriate origin mean for the k-th covari-
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 ate for the t-th individual, and oi is a function of

 o and terms involving origin-specific means

 for the covariates. Consequently, the second

 term in equation 24 disappears for an individ-

 ual whose value on each covariate is at the mean

 of his or her origin group. With this specifica-

 tion, the log odds of moving to one category

 versus another for an "average" individual in

 origin category i equals the appropriate differ-

 ence between the transformed intercepts. The

 number of intercept parameters can then be

 reduced substantially by employing existing

 strategies found in the mobility literature. For

 example, using the Featherman-Hauser strat-

 egy, we could write

 Uitw= w20) + u12(rij) -ul2(rij) (25)

 As an illustration, I estimate the following

 model:

 p K

 log tj =-( id) +kY (O. sj+')kstk

 (7&Aitk YSXtk bg) (26)

 where & is constrained as in equation 25 with R
 = 6, where s = 1 or 2 depending upon whether

 an individual's origin category is nonmanual

 or manual, and where the last term contains an

 additional experience effect on the probability

 of leaving one's origin category (which is as-
 sumed to have one value for all nonmanual

 origins, and another for all manual origins). The

 partition for oi and the estimates for model 26
 are shown in Tables 4a and 4b.

 In comparison with model 4, model 26 re-

 duces the number of parameters needed to de-

 scribe the structure of mobility from 180 to 32.

 The fit of this model is rather good by conven-
 tional standards (L248 = 168), and the BIC score

 suggests it is superior to model 21 as well (BIC

 = -938.7 for model 26 vs. -830.6 for model 21).
 The specification of the intercepts in terms of

 the column and interaction effects of standard

 loglinear models makes their interpretation
 noticeably easier. For example, it is much eas-
 ier to see in Tables 4a and 4b than in Tables 3a

 and 3b that the "average" job changer is more

 likely to stay within his origin group than to

 move to any other single category, that non-

 manual job changers are more likely to stay

 within their stratum than to move to a manual

 job, and that crafts or other blue-collar job

 changers are more likely to end up in one of

 these two groups than to obtain a service, sales,

 or professional-managerial job. While model

 26 constrains these interaction terms along the

 lines of the Featherman-Hauser model, the

 scoring models of Haberman or Goodman could

 have been used instead to reparameterize the

 interactions. It would even be possible to relate

 the scores for the covariates and the scores for

 the baseline interactions if there were a theo-

 retical advantage to doing so. Finally, the

 equivalent of a saturated model for the inter-

 cepts could be estimated, if that model were

 appropriate.

 CONCLUSION

 I have discussed a class of constrained multi-

 nomial logit models that are practical to use

 and that offer the possibility of new insights

 into the process of social mobility. While the

 sample size used in the examples of this paper
 is relatively small, similar models with much

 larger samples are practical, even when using a

 microcomputer. With more powerful comput-

 ers, estimating models with more covariates and

 even larger samples is possible.

 To realize the full potential of this modeling

 strategy, the researcher must specify the con-

 straints in a way that best illuminates the un-

 derlying structure of mobility. Goodness-of-fit

 considerations must also be kept in mind; a

 badly misspecified model may distort rather

 than reveal major patterns in the data. While

 constructing sensible specifications is more
 work than mechanically estimating an un-

 constrained multinomial logit model, the result
 is a gain in knowledge about the influence of

 individual and structural factors on mobility out-

 comes. From both a practical and a theoretical

 point of view, these models help close the gap
 between the status attainment and the loglinear

 approach to the study of social mobility.

 THOMAS A. DIPRETE is Associate Professor of
 Sociology at Duke University. His research interests
 concern the link between labor market structure and

 job mobility, and the impact of recent changes in the
 American and world economy on labor markets,

 employment practices, and work careers.
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 Appendix. A Brief Comparison of Ordered Logit and SOR
 Models

 A binary logit model can be interpreted as a threshold model

 for some latent variable y*. Assume that:

 y '1= x( + et (27)

 Given this assumption, we can write

 Prob(y,* > 0) = Prob(c, > -x('1B) = 1 - F(-x('B) = F(x['B),

 where F is the logistic distribution function. If we have a

 dichotomous dependent variable y, we might assume that

 we observe yt = 1 when y,* > 0, and yt = 0 otherwise. This
 assumption establishes a correspondence between the ob-

 served variable and the latent variable, and allows us to

 interpret components of Bk in terms of the effect of xtk on y,*
 as well as in terms of the effect of x tk on changes in

 Prob(y, = 1).
 To generalize this model, assume that the underlying

 model is the same, but that we observe a polychotomous

 response. Suppose for simplicity that yt is trichotomous. In
 the general case (Maddala 1983, p. 46), we might desig-

 nate these threshold values as -x['B, and -x['B 2. Under these
 assumptions, both the latent variable y* and the threshold

 values, which determine the mapping from the latent to the

 observed variable, vary across individuals. It follows that:

 Prob(y, = 1) = Pt = Prob (y < -x'B1,) = F(-xB1,)

 Prob(y = 2) =P2 = Prob (-x['1 < yt < -x'B2)
 = F(-x'f2) - F(-x[B,)

 Prob(y, = 3) =P3 = Prob (Yt> -X[32)
 = 1 - F(-x[l2) = F(x' B2)

 The "global" logits (Agresti 1984, p. 19), log((Pt2 +
 P 3)/P +t,) and log(Pt3/(P t + Pt2)), have simple forms under
 this model:

 Appendix Table 1. Variable Definitions

 Variable Definition

 Professional/ Census Codes 3-37, 43-199
 managerial

 Technical/clerical Census Codes 203-235,303-389

 Sales Census Codes 243-285

 Service Census Codes 403-469

 Crafts Census Codes 503-699

 Other blue-collar Census Codes 703-899

 Race White = 1; Nonwhite = 0

 Education Highest year of education
 attended

 College degree Education ? 16

 Experience Age - Education - 5 in the
 previous year

 Gender Male = 1; Female = 0

 log((Pt2 + Pt3)/Ptl) = Xt[B1

 log(P 3 /(PH + Pt2)) = Xt[B2 (28)
 In contrast to these simple forms, the "local" logits such

 as log(P 2/P1,), or log(Pt3/Pt2) are more complicated. For
 example,

 log(P2/Pt) = l(eXt l eXt2) (29) 1 +e t 2

 The usual simplification of the ordered logit model, which

 reduces the number of parameter vectors in the trichoto-

 mous case from two to one, is to assume that:

 -x'A = -x' + c.

 This constraint does not materially simplify equation 29,

 but it does lead to a more parsimonious form for 28, namely

 log((Pt2 + Pt3)/Ptl) = Xt[B1

 log(P 3/(P1 + Pt2)) = xt,1 - C

 The assumption -xB'132 = AA + c amounts to assuming that
 the relationship between x, and the odds does not depend
 upon the cutpoint.a Because the odds that y,* lies above vs.
 below any cutpoint are proportional to x('1B, in the standard
 simplification of the ordered logit model, McCullagh (1980)
 referred to this standard form as the "proportional odds"

 model.b

 In contrast, mobility models based on the multinomial

 logit model always yield simple forms for "local" logits of

 the form log(P, /P,'), for example,

 log _ = xt'(B2 - 1)
 Pt1

 while "global" logits of the form log(Y,,, JP,/,,<, P ) are
 more complicated:

 log(P3/(P1 + P2)) = log( 1

 In the multinomial logit model, there is no underlying

 latent dependent variable. The outcome categories are as-

 sumed to have an objective existence - they are not arti-
 facts of the method for measuring the dependent variable.

 The SOR simplification assumes that covariates have par-

 allel effects on outcomes (in other words, one might as-
 sume a latent intervening variable between the exogenous

 variables and the dependent variable) and uses this assump-

 tion to reduce the number of parameters in the model. This

 contrast - the assumption of latent intervening variables

 in a model for "local" logits vs. the assumption of propor-

 tional odds with a latent dependent variable in a model for
 "global" logits - best captures the difference between the

 simplifying assumptions of the SOR models considered in
 this paper and the more familiar ordered logit model.

 a In other words, the odds-ratio for being in categories 2

 or 3 vs. 1 for two individuals is the same as the odds ratio

 for being in categories 3 vs. 1 or 2 for the same individuals.

 This ratio depends only on the difference between their co-

 variate vectors.

 I This proportionality assumption is similar to the pro-

 portionality assumption in a proportional hazards model

 (McCullagh 1980). For an empirical example in which the

 proportional odds simplification of the general ordered logit

 model breaks down, see Peterson and Harrell (1990).
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 Appendix Table 2. Full-Time Workers Who Changed Jobs in the Previous Year But Remained with the Same Employer:
 1983, 1987 January CPS

 Destination Occupation

 Origin Professional/ Technical/ Other
 Occupation Managerial Clerical Sales Service Crafts blue-collar Total

 Males Professional/ 245 30 40 13 27 10 365
 managerial

 Technical/clerical 58 74 21 8 27 32 220

 Sales 46 7 74 3 15 10 155

 Service 22 11 6 62 17 30 148

 Crafts 43 39 19 15 112 76 304

 Other blue-collar 37 42 31 30 117 233 490

 Total 451 203 191 131 315 391 1682

 Females Professional/ 169 62 24 10 4 7 276
 managerial

 Technical/clerical 145 368 34 11 13 21 592

 Sales 38 47 48 8 2 8 151

 Service 33 33 7 35 3 14 125

 Crafts 2 8 1 2 9 13 35

 Other blue-collar 5 29 13 10 17 95 169

 Total 392 547 127 76 48 158 1348
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