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 Economica (2001) 68, 63-76

 Measuring Social Mobility as Unpredictability

 By SIMON C. PARKER and JONATHAN ROUGIER

 University of Durham

 Final version received 27 September 1999.

 By associating mobility with the unpredictability of social states, new measures of social
 mobility may be constructed. We propose a family of three state-by-state and aggregate
 (scalar) predictability measures. The first set of measures is based on the transition matrix.
 The second uses a sampling approach and permits statistical testing of the hypothesis of
 perfect mobility, providing a new justification for the use of the X2 statistic. The third satisfies
 the demanding criterion of 'period consistency'. An empirical example demonstrates the
 usefulness of the new measures to complement existing ones in the literature.

 INTRODUCTION

 An enduring and popular medium for representing social mobility is the
 transition matrix, which describes the probabilities of persons moving from
 any one state to another state, or remaining where they are. Despite their
 popularity in applied work, there is still no commonly agreed definition or
 measure of social mobility based on transition matrices. This is due partly to an
 absence of unanimous agreement over what the word 'mobility' actually
 connotes. For example, Bartholomew (1982; 1996, ch. 5) distinguishes between
 mobility as distance moved between different states ('movement'), and mobility
 as the speed at which a social process changes over time ('dependence'). A
 number of measures have been proposed for both notions of mobility, most of
 which map transition matrices into scalar summary indices. Whereas the
 movement measures emphasize elements of the transition matrix that involve
 cases travelling over a large number of states, dependence measures regard as
 mobile those social structures that rapidly converge to their steady state.1

 In fact, it is possible to suggest a third notion of mobility that is quite
 distinct from the other two. This is mobility as freedom of movement ('un-
 predictability'). Unpredictability is distinct from the other two notions of
 mobility, in that a social structure can adjust rapidly to its steady state with lots
 of movement of cases between states, yet can do so in a predetermined and
 predictable fashion.

 An example might help to clarify the meaning of the unpredictability
 concept. Consider an occupational classification that includes the following two
 states: first-year apprentices and second-year apprentices. Individuals in the first
 state will almost invariably move to the second after one year; yet this is a very
 predictable movement, which says more about the way the occupational groups
 have been defined than about any genuine mobility. 'Movement' measures
 would rather misleadingly indicate mobility in this case, despite the predictability
 of the transition; and 'dependence' measures might also indicate mobility,
 depending on the other elements of the transition matrix.

 The purpose of this paper is to develop new measures of social mobility
 based on the notion of mobility as unpredictability. As will be seen,
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 unpredictability measures may give very different indications of social mobility
 to 'traditional' movement-based or dependence measures-having clear
 implications for policy-makers concerned about the degree of 'social mobility'.
 A family of predictability measures is proposed, consisting of three members:
 measures based on the transition matrix alone, measures permitting statistical
 inference about the predictability of a social structure, and measures designed
 to satisfy a demanding criterion called 'period consistency'. Each member
 enjoys some special properties not shared by the others, meriting their separate
 treatment. For example, the ability to test the hypothesis of perfect mobility
 may be especially attractive when transition matrices are estimated from small
 samples and/or noisy data. In this context it is interesting that one of the
 measures we propose is none other than the well known X2 statistic. Also, the
 period-consistent measures broaden the range of possible comparisons between
 transition matrices, provided that some particular technical requirements are
 satisfied.

 Throughout the paper, the discussion relates purely to the standard
 transition matrix framework based on a discrete-time first-order Markov

 process with discrete states.2 The discussion is general in that the concept of
 mobility is not confined to any particular context, but is equally applicable to
 social, occupational, intergenerational, geographical and income mobility
 processes, among others. Of course, the applicability of the Markov frame
 work may be limited in practice, for example if the transition matrix is not
 time-invariant as assumed.3

 The paper is organized as follows. Section I distinguishes between different
 types of mobility, and states the defining characteristics of state-by-state and
 scalar predictability measures. Section II presents a set of new measures, and
 Section III discusses measures that satisfy period consistency. Section IV
 illustrates the new measures with a transition matrix adapted from Harbury
 and Hitchens's (1979) work on British intergenerational wealth mobility.
 Section V concludes.

 I. TYPES OF MOBILITY AND MOBILITY MEASURES

 Suppose each member of the population can be classified into exactly one of the
 k2 ordered tuples (i, j), denoting 'from i to f. The proportion of those members
 starting in i that finish in j is given by the element Pij of the population matrix P.
 Row i of P, the proportionate destinations of members starting in i, is denoted
 Pi. We commence with two definitions based upon P. The first distinguishes
 between predictability and movement notions of mobility, and the second
 defines precisely the properties a predictability measure should possess.

 Definition 1 (Transition types of states). State i is perfectly mobile if Pi = k -' lk.

 State i is fi = ei, where ei is the unit vector with a 1 in position i and 0
 elsewhere. State i is perfectly predictable if Pi E {el, ..., ek}. The set of all
 possible Pi is denoted Pi. In obvious notation, PD c P P, C Pi. We also denote
 by Pl the set of all possible P.

 According to Definition 1, perfect mobility (PM) in a state implies that
 any case is equally likely to move to any of the k possible destination states.
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 Conversely, perfect immobility (PI) implies that any case remains in its starting
 state for ever.4 Thus, PI in state i is characterized by a row of the transition
 matrix in which there is unity in column i and zero elements in all other
 columns. Perfect predictability (PP) differs from perfect immobility because
 unity occurring in any of the columns with zeros elsewhere implies that the
 transition is predetermined. It is in this sense that PP is a generalization, or
 superset, of PI.

 Definition 2 (Predictability measure). A measure m : Pi H -R is a predictability
 measure if (i) it is symmetric in the individual probabilities, and (ii) transferring
 an infinitesimal quantity of probability mass within Pi from state j to state j'

 increases m(Pi) if and only if P1 < PO".

 Consider part (i) of Definition 2 first. For a symmetric function,
 m(Pi)=m(perm Pi) for all Pi E 1Pi. Symmetry is inherent in measures of
 predictability: there is no notion of distance between states, so all states are
 treated equally. Thus, symmetry ensures that all members of PPP indicate the
 same (maximal) level of immobility, which is desirable. The equal treatment of
 states in turn ensures that the same function m can be applied to any one of the
 sets Pi(i= 1, ..., k). Furthermore, symmetric measures are invariant to the
 ordering of states in the transition matrix. This also happens to be a desirable
 property if the state ordering decision is essentially arbitrary. Part (ii) of
 the definition asserts that predictability measures must increase whenever the
 probability mass becomes more concentrated, and must never rise when it
 becomes less concentrated. Thus, predictability is synonymous with the
 concentration of the probability mass of Pi, leading, ultimately, to Pi E Pp,

 By implying invariance to state orderings, symmetry introduces a
 fundamental distinction between predictability and movement-based measures.
 Whereas the former possess symmetry as an innate characteristic, the latter do
 not, since the notion of movement by its nature attributes intrinsic importance
 to the positioning of states in the transition matrix. Therefore all movement
 measures necessarily presuppose that there is a natural ordering of states in the
 transition matrix.5 This supposition is tenable if states are arranged according
 to a meaningful and unambiguous metric, e.g. prosperity, or a well defined and
 one-dimensional index of social class. However, it is common in the field of
 applied social mobility research to encounter situations when natural social
 orderings do not exist, or are not comparable across samples (see Bartholomew
 1996, ch. 5, for some specific examples). Many occupational or social class
 classifications are functions of several different underlying variables, so a single
 unambiguous ordering which holds over all the variables will not exist.6 Even
 when a meaningful ordering does exist, a symmetric treatment of the states is
 not of itself objectionable, because even some movement-based measures do
 this (i.e. those based just on the diagonal elements of P), and because
 unpredictability rather than movement is the focus of interest here.

 Consequently, m(Pi) cannot be expected to satisfy some particular
 properties built into certain movement-based measures.7 For example,
 Shorrocks (1978) defines monotonicity (MO) as the attribution of greater
 immobility to matrix P than equal-sized Q if pi< <qi Vi j, with strict
 inequality for at least one i #j. MO favours matrices with greater off-diagonal
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 elements: this is because they imply greater movement away from initial states.
 In contrast, symmetry allocates no special status to the diagonal elements.8
 As a second example, consider the redistribution of probability mass within

 a transition matrix, such that the unit row sum constraints of the matrix are
 preserved. There are several variants of this type of transformation in the
 literature. For example, Atkinson et al. (1992) define a diagonalizing switch
 (DS) as a change that, for two states r and s, increases the proportions of
 individuals remaining in these states at the expense of reducing the proportions
 moving between r and s. Cowell (1985) discusses a similar property, called
 monotonicity in distance, in a non-Markovian context.9 Dardanoni (1993)
 defines a dynamic Pigou-Dalton transfer (DPD) as a change that increases the
 probability of upward movement for those in lower ('worst') initial states while
 increasing the probability of downward movement for those in higher ('better')
 initial states. Dardanoni shows that this is equivalent to reducing the
 covariance between individuals' initial and lifetime status. Movement mobility
 is reduced by a DS and increased by a DPD; but there are obviously no
 necessary implications for m. Under symmetry, all states are treated equally, so
 there is no interest in shifting probability mass between states, except for its
 implications in concentrating it in a few states (recall Definition 2).10
 Definition 2 sets out the essential characteristics of a predictability measure

 at the state level. However, it may be desirable for a practical measure to
 possess some additional properties. One such property is normalization to
 some well defined finite interval on the real line, with extreme values being
 given by PM and PP defined above. A second is invariance to the sample size,
 in cases where it is not possible to collect data from the entire population. It
 may also be desirable to map the whole of the transition matrix into an
 aggregate scalar measure, M: PF H - , in such a way that M is clearly related to
 the state-by-state measure m introduced in Definition 2. An obvious source of
 candidates for M is the set of symmeteric functions that are monotonic
 increasing in their individual arguments, as it then follows that M will also be a
 predictability measure in the spirit of Definition 2. We will address these issues
 in the following section.

 II. Two SETS OF PREDICTABILITY MEASURES

 This section presents two sets of predictability measures: those based upon the
 population transition matrix, and those based upon a random sample from the
 population. The latter permit statistical inference about the predictability of
 the population transition matrix. In both cases we start by proposing a state-
 by-state measure, before generalizing it to an all-states-together, or 'aggregate',
 measure. This constructive approach allows us to exploit the property of
 'period consistency', which is discussed in Section III.

 Measures based on the population transition matrix

 For situations in which it is possible to collect data on every member of the
 population we propose the following measure. Not only does this measure
 satisfy the predictability criteria, but it is also straightforward to verify that it is
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This content downloaded from 176.235.136.130 on Thu, 19 Dec 2019 13:49:34 UTC
All use subject to https://about.jstor.org/terms



 2001] MEASURING SOCIAL MOBILITY AS UNPREDICTABILITY 67

 normalized to the unit interval, taking a minimum of 0 for Pi E IfM and a
 maximum of 1 for all P, E P PP

 Proposition 1 (Population state-by-state measure). The measure
 k

 kZ P I-1

 m(Pi) :=
 k-1

 is a predictability measure according to Definition 2.

 Proof. Symmetry is obvious. Let P' be Pi following the transfer of an
 infinitesimal amount of probability mass 6 from state j to state j' - j. Then it is
 straightforward to show that

 2k6

 m(Pi) - m(P') = [Pij - (Pij' + 6)], k-i

 confirming that m(Pi) as defined increases if and only if P.y < P,, as required. O

 For an aggregate measure on P E P, we would suggest the sum of the state-
 by-state measures

 (1) M(P)= m(Pi)= k \ 2 1
 i=1 k- 1,j

 for which 0 < M(P) < k, with the two extremes corresponding to P E PPM and
 P E pPP, as before. The aggregate function M(P) clearly enjoys the same
 predictability properties as m(Pi).

 Measures based upon samples

 Measures of mobility that fulfil the criteria set out in Definition 2 presuppose
 that the whole population has been surveyed, as they are based on P. While
 there are situations in which this is possible, it is more likely that the data
 represent a finite sample of size n from a generally much larger population.
 Denote the sample, represented by transition frequencies, as X, and define

 N= Xlk, P = (diag(N))-X
 to be, respectively, the numbers starting in each of the k states, and the sample
 transition matrix. We caution against the much-used practice of simply
 substituting P for P in population-based measures such as those we have
 described in the first subsection above. This discards the potentially useful
 information contained in N. We propose instead a second set of measures
 based explicitly within a sampling framework.

 Assuming that X is a random sample, the distribution of Xi given ni
 (component i of N) is multinomial:

 (2) Xi ni ~ Muk(Pi, ni).
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 Consequently the asymptotic distribution of Pi is Gaussian:

 (3) lim Pi I ni r Nk(tL(Pi), n E(Pi)), ni - oo

 where pi(Pi) = Pi and E(Pi) = diag(Pi) - PiP'i, from which it follows that the normal distribution in (3) is a singular distribution with k - 1 degrees of
 freedom. Hence we have the usual chi-squared result,

 (4) nt(P - (Pi)) Ty(Pi)(Pi Pi) a 2
 pi" -k-I'

 where E-(Pi) is the Moore-Penrose generalized inverse of E(Pi).1
 We can use this sampling framework to define a sample-based predict-

 ability measure that will allow us to attach statistical significance to deviations
 from some benchmark value. As established by Definition 1, the two extreme
 cases are perfect mobility and perfect predictability. But, whereas the former
 has a unique characterization, the latter does not; therefore we compare our
 sample transition matrices against the benchmark of perfect mobility, but in
 the direction of perfect predictability. To put this another way, we require a
 predictability measure for Pi with a sampling distribution under the null
 hypothesis Pi E PPM. Our suggested sample-based measure is closely related to
 our population-based measure, m(Pi).

 Proposition 2 (Sample state-by-state measure). The measure

 (5) r(Xi) = ni k ) - 1 = ni(k - 1)m(Pi)
 j=l

 is a predictability measure with the property r(Xi) IPi PP as XPM , where
 the distribution is asymptotic with respect to ni.

 Proof. That r(Xi) is the sample-equivalent of a predictability measure
 follows directly from its relation to m(Pi). To prove that r(Xi) has the required
 distribution, rewrite it in the equivalent form

 r(Xi) = ni(P T - E)T -(Pi - 1),
 where

 I=k k k-1 i =j
 --1 i /7j.

 Note the general asymptotic result given in (4), substituting k-11k for Pi in
 p(Pi) and E(Pi). It only remains to show that E- is indeed the generalized
 inverse of

 k-1 -1 ... -1

 -1 k-1 ... -1
 E(k -' lk) = k -2

 T-1 -1 ... k- 1c
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 which can be verified by direct computation (see e.g. Searle 1982, p. 212 et

 seq.). []

 Interestingly, and perhaps not surprisingly, the measure r(Xi) proposed in
 Proposition 2 can be re-expressed as the much used chi-squared 'goodness-of-
 fit' statistic,

 ~(6) rX k (XijY - ni/k)2
 j=1 nil/k

 where nil/k is the number expected in each state implied by the hypothesis
 Pi E ?PPM. Moreover, by the additive property of independent chi-squared
 distributions, the aggregate measure

 k

 (7) R(X) = 5 r(Xi)
 i= 1

 has a X2(k -1) distribution under the null hypothesis of P E PM. Note that
 there are k(k - 1) degrees of freedom, as we are only conditioning upon the
 row sums, N.

 Thus, Proposition 2 provides a new interpretation of the chi-squared
 statistic when applied to sample transition matrices: it is a predictability
 measure, respecting the two properties described in Definition 2, for which the
 null hypothesis is the extreme case where predictability of the population is at a
 minimum.

 One of the features of our measure r(Xi) is that it is increasing in ni. This of
 course is an implication of its derivation from a sampling framework: when
 comparing two states with the same sample transition probabilities, the state
 with the larger number of cases will have a smaller p-value for r(Xi), reflecting
 the fact that with more data the evidence against PM is stronger.12 But where
 the difference in the number of cases is not important for the analysis (e.g.
 where the investigator wishes to utilize measures that are not sensitive to ni),
 different states can be compared directly using m(Pi) instead. There is one case,
 however, where the sampling framework is crucial, which is the comparison of
 states in different transition structures. This raises the problem that the number
 of states in the transition structures may not be the same, so that the scaling of
 the measure by k becomes important. By quoting the p-values of r(Xi) the
 different values of k are accounted for through the different sampling
 distributions.

 III. MEASURES THAT SATISFY 'PERIOD CONSISTENCY'

 A general class of measures

 We have constructed measures M(P) and R(X) that evaluate the predictability
 of transition structures, either of the population or of a random sample from
 that population. It would be highly desirable if these measures, or something
 similar, satisfied the property of 'period consistency' (Shorrocks 1978).

 ? The London School of Economics and Political Science 2001

This content downloaded from 176.235.136.130 on Thu, 19 Dec 2019 13:49:34 UTC
All use subject to https://about.jstor.org/terms



 70 ECONOMICA [FEBRUARY

 Definition 3 (Period consistency). A function U: PH ?R is period consistent if,
 for all P, Q E P,

 U(Ps) > U(Q U(P) U(QS)@ U(P) >U(Q), s= 1, 2, ...

 If a mobility measure is period-consistent (PC), then it is possible to
 compare directly transition structures that span different periods of time. As
 Shorrocks points out, PC is a very demanding property, which is not possessed
 by any conventional mobility measure.13 Nor is PC possessed by our two
 measures M(P) or R(X). However, our approach of formulating aggregate
 measures on the basis of state-by-state measures suggests the following
 procedure for creating PC measures of mobility.

 Proposition 3 (PC aggregate dual). If P is a regular transition matrix in a
 time-homogeneous Markovian process, then any state-by-state measure v(Pi)
 has a PC aggregate dual, V*(P) = v(II(P)), which is period-consistent, where
 II(P) is the equilibrium distribution of P (i.e. the standardized eigenvector of
 the largest eigenvalue of P).

 Proof. The proposition can be verified by observing that, under the given
 conditions, V*(P) possesses the stronger property

 V*(Ps) v(H(Ps))= v(II(P)) V(P),

 which follows from I1(Ps) =II(P), giving rise to what we might term strong
 period consistency. It is clearly the only aggregate measure that can satisfy this

 property. []

 Proposition 3 shows that the PC aggregate dual as defined above not only
 possesses period consistency, but also satisfies an attractive stronger version of
 this invariance property, whereby the time period leaves unchanged not only
 the orderings of mobility measures, but also the values of the individual
 measures themselves. As stated in the proof of the proposition, this arises
 because the measure is defined on the equilibrium distribution of the transition
 matrix, provided that this equilibrium distribution exists.

 One drawback to a PC-aggregate dual is that the mapping from transition
 matrix to mobility measure is 'many-to-one', as can be illustrated by the two-
 state bi-stochastic transition matrix

 0 1 -0

 P= I 0 s0<1.
 1-0 0

 The case of 0 = 1/2 corresponds to PM, while the extreme cases of both 0 = 0
 and 0 = 1 correspond to PP. But whatever the value of 0, P has the same
 equilibrium vector II(P)= (1/2, 1/2), and would therefore be adjudged to be
 PM. This highlights the importance of using the PC aggregate dual only in
 conjunction with the state-by-state measures, as the latter would be sensitive to
 the various values of 0. Disagreement between the typical state-by-state value
 and the aggregate value then becomes a diagnostic that the transition matrix
 has an interesting and possibly unusual structure; it would also suggest that an

 ? The London School of Economics and Political Science 2001

This content downloaded from 176.235.136.130 on Thu, 19 Dec 2019 13:49:34 UTC
All use subject to https://about.jstor.org/terms
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 aggregate measure defined on P or X would probably be preferable to one
 based on II(P), even though the former are not PC.'4

 PC-aggregate measures of predictability

 We turn now to our predictability measures, m(Pi) and r(Xi). There are two
 possibilities. The first is where P is known or where the differences in the
 numbers of cases in the different states is considered to be immaterial (e.g.
 where the investigator wishes to utilize measures that are not sensitive to N).
 Then M*(P) = m(H(P)) and M*(P) = m(II(P)) are PC aggregate measures in
 cases where the conditions of Proposition 3 are thought to hold. In cases where
 these conditions do not hold, the PC property is not relevant, and the
 investigator should stick with the aggregate measures already described.

 The other possibility is where P is not known and the difference in the
 numbers of cases in the different states is considered to be important. What is
 required is a sample-based PC measure. We require, in effect, the sampling
 distribution of some simple transformation of m(H(P)) I N. Unfortunately, this
 is a problem, because the sampling distribution of eigenvectors is notoriously
 intractable. However, the following approximation is reasonable in situations
 to be discussed below.

 Proposition 4 (PC-aggregate sample measure). The measure

 R T(X) = fik(k - l)m(II1)

 where HI = k-'iTlk and h is the harmonic mean of {nl, ..., nk}, is a first-order
 approximation to the PC-aggregate measure based upon m(II(P)) I N, with the
 sampling distribution

 R I(X) P . PPM asy 2 R ?(X) ppP M k-11

 where the limit is taken as min{nl, ..., nk)} O .

 Proof. To see that II1 is a first-order approximation to II(P), note the
 general result that

 lim IIs = k-'(Ps) Tlk = (P), S 00

 where we then replace P with its consistent ML estimator P.

 To find the sampling distribution of R I(X), write II as the equivalent form
 k- (P + + P+ k), remembering that the vector Pi is defined as row i of P.
 Given ni, each Pi has an asymptotic Gaussian distribution with mean p and
 variance (ni)-lE, where Ip and E were given in Proposition 2; furthermore,
 given N, the Pi are mutually independent. It follows that

 II1 N, P E pPM as Nk(l, (k~)-').
 To finish the proof, note that R T(X) can be written as the quadratic form:

 R j(X) = k~(I1 - p) TZ -(II - ~I),

 in exactly the same manner as in Proposition 2. [I
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 The proposed measure R T(X) is a reasonable approximation to the
 PC-aggregate measure whenever 11i is a reasonable approximation to
 II(P). This will be the case when (i) the least of the components of N is
 large, in which case P will be close to P, and (ii) when HII H II(P), which it is
 always possible to assess directly given P. In other circumstances it may
 be possible to determine the sampling distribution of m(II(P)) IN by
 simulation.

 IV. EMPIRICAL ILLUSTRATION

 In this section the new measures are illustrated using a transition matrix
 constructed from Harbury and Hitchens's (1979) study of UK intergenera-
 tional wealth mobility. This particular example provides a succinct and clear
 distinction between the different concepts of mobility.

 Harbury and Hitchens were interested in discovering whether the terminal
 wealth left by sons was related to the terminal wealth left by their fathers.
 Following an earlier approach of Wedgwood (1929), they drew random
 samples of sons and fathers who could be traced using probate records. Both
 'forward tracing' (tracing sons of fathers who died in a given year) and
 'backward tracing' (tracing fathers of sons who died in a given year) were used.
 Table 1 presents a sample transition matrix, X, based on backward tracing of
 fathers of sons who died in 1973. It is adapted from table 3.2 of Harbury and
 Hitchens (1979), and contains information on transitions between five wealth
 states.15 All wealth values are given in constant prices, and so are comparable
 between fathers and sons.

 Two points should be borne in mind when interpreting these data. First,
 the absence of information about individuals with terminal wealth below

 ?10,000 (which is partly a consequence of the structure of death duties at the
 time of the sample) means that inference relates only to the 'moderately well
 off, and not to the UK resident population as a whole. Second, the data
 describe gross estates left by fathers, not net inheritances received by sons.
 Bequests and inheritances will often differ not only because of death duties, but
 also because more than one sibling shares an estate. Table 1 shows that the
 modal destination of sons whose fathers belonged to the very top wealth class
 is the class below.

 TABLE 1

 THE INTERGENERATIONAL WEALTH SAMPLE TRANSITION MATRIX

 Sons' TWG
 Fathers' terminal

 wealth group (TWG) ?'000 (1) (2) (3) (4) (5) N

 1 10- 25 16 12 10 13 2 53
 2 25- 50 7 8 7 10 0 32
 3 50-100 4 9 6 13 0 32
 4 100-500 1 5 5 22 2 35
 5 500+ 0 1 1 13 1 16

 Source: adapted from table 3.2 of Harbury and Hitchens (1979).
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 The transition matrix in Table 1 was used to compute movement,
 dependence and predictability measures of mobility. For movement we use
 Bartholomew's (1982) measure,

 k k

 b(Pi) = ~ P i - j I B(P) I n(P)b(Pi),
 j=-1 i=1

 and Shorrocks's (1978) measure,

 k k

 s(Pi)-- = k (1 - Pi) S(P) = k -1 s(Pi), k-1 i=l
 where in both cases we have inferred the state-by-state measures from the
 aggregate measures.16 We note that, as the wealth classes are of different
 widths, we may prefer symmetric measures such as s(Pi) or our own m(Pi) to
 measures such as b(Pi) because the latter ascribes, implicitly, the same width to
 each state.

 Table 2 presents the state-by-state and aggregate measures. The m(Pi) and
 r(Xi) values indicate that predictability is greater for the high-wealth groups
 and smaller for the low-wealth groups. At a significance level of 5%, the null
 hypothesis of perfect mobility cannot be rejected for the second lowest wealth
 group. However, it can be rejected for all other wealth groups, with the top two
 wealth groups, 4 and 5, being particularly predictable. Interestingly, both
 Bartholomew's and Shorrocks's measures suggest that 4 is an immobile state
 and that 5 is a mobile state, because for both states most of the cases end in
 state 4. This highlights very clearly the difference between movement and
 predictability.

 Towards the end of Table 2 we give the aggregate measures, although after
 observing the variation in the state-by-state measures we may well be cautious
 about summarizing the whole matrix in an aggregate value. The statistic R(X)
 is highly significant, which is not surprising given the values of the state-by-
 state measure. Of more interest is the PC aggregate measure R*(X). From the

 final two columns of the table we can see that the approximation II1 is very

 TABLE 2

 MOBILITY MEASURESa

 TWG b(Pi) s(Pi) m(Pi) r(Xi) fI(P) HII
 1 10 - 25 1.49 0.87 0.05 10.49* 0.11 0.13
 2 25- 50 1.06 0.94 0.07 8.94 0.19 0.19

 3 50- 100 0.94 1.02 0.12 15.19"* 0.17 0.16
 4 100- 500 0.57 0.46 0.30 42.00** 0.49 0.48
 5 500+ 1.12 1.17 0.59 37.75** 0.03 0.03
 Aggregate 0.85 0.89 1.13 114.37**
 R (X) 82.11 * *

 a Measures as defined in the text.

 * indicates rejection of null hypothesis of perfect mobility at the 5% Type I error level; * at 1% or
 less.
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 similar to HI(P), and, as there are a reasonable number of cases starting in each
 of the five states, we may be confident that we have a period-consistent
 measure of predictability which indicates that P is very significantly different
 from perfect mobility.
 The two measures B(P) and S(P) appear at first to give an inconsistent

 picture, because they measure different aspects of mobility. Bartholomew's
 B lies in the range 0 to k - 1, although the upper limit could be attained only
 by a non-regular periodic process. This makes the observed value of 0.85
 seem rather low. Shorrocks's S lies in the range 0 to 1, which makes 0.89
 seem rather high.17 Taken together, these two measures suggest that cases
 tend to move away from their initial state, but not very far. A similar
 difficulty of interpretation applies to the Sommers-Conlisk (1979) depen-
 dence measure I A2 , where A is the vector of eigenvalues of P, which
 measures the speed of convergence to the steady state and lies in the range 0
 to 1. In our case this value is 0.39, which would seem to be indeterminate.

 The similarity of Hl and HI(P) is a more compelling demonstration that
 convergence will be fairly quick, as this similarity depends upon the full
 eigenstructure of P.

 V. CONCLUSION

 This paper has considered alternative concepts of mobility and issues in
 measuring it using discrete transition matrices. A new family of measures was
 proposed, based on the concept of mobility as unpredictability of movement,
 in contrast to the traditional treatment of mobility as distance travelled
 between states or the speed of convergence to equilibrium. The new measures
 can be used to measure predictability on both a state-by-state and an
 aggregate (i.e. whole-matrix) basis. The first set of measures is based on the
 transition matrix. The second set uses a sampling approach and permits
 statistical testing of the hypothesis of perfect mobility, providing a new
 justification for the use of the X2 statistic. The third set satisfies the
 demanding criterion of 'period consistency', including a measure that also
 follows a well-known sampling distribution to a first-order approximation.
 The approximation was found to be a good one in an empirical example
 based on UK intergenerational wealth data; this example also demonstrated
 the usefulness of the new measures to complement existing ones in the
 literature.

 We hope that future researchers will find it useful to supplement the
 traditional measures of mobility with the new predictability measures proposed
 here. Apart from their advantages summarized above, the new measures can be
 expected to facilitate a more comprehensive understanding of the innate
 mobility of social structures.
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 NOTES

 1. For examples of movement measures, see Bartholomew (1996); an example of a dependence
 measure is the modulus of the second largest eigenvalue of the transition matrix, suggested by
 Sommers and Conlisk (1979). See Bartholomew (1996, ch. 5) for an extended discussion of
 dependence, which is also referred to as 'social inheritance'.

 2. Alternative approaches include measuring movement by differences between vectors of
 observations at different times (Fields and Ok 1996); and measuring dependence by correlation
 coefficients (Sommers and Conlisk 1979).

 3. See Shorrocks (1976), Atkinson et al. (1992) and Atoda and Tachibanaki (1991) for some
 international evidence against this assumption in the context of income mobility.

 4. Both perfect mobility and PI are widely adopted as benchmark cases in the literature (Prais
 1955; Bartholomew 1982).

 5. Note that this excludes those measures based on lack of movement, i.e. those that use the
 diagonal elements of P only (see Bartholomew 1996, ch. 5).

 6. For example, it is a matter of subjective choice whether farmers who own their farm and
 employ labourers should be placed adjacent to a 'managerial and supervisory' group in the
 frame of the transition matrix, or adjacent to 'semi-skilled manual workers'. The problem
 arises because there are conflicting aspects of 'occupational class'; i.e. there is no unique metric
 for directing the classification.

 7. The use of the word 'symmetry' in the present context should not be confused with its other
 meaning of anonymity. For example, Dardanoni (1993) considers the importance of symmetry
 as anonymity with regard to social welfare rankings of different mobility structures; and
 Shorrocks (1993) considers symmetry/anonymity a desirable property of income inequality
 and mobility measures in a non-Markovian context.

 8. Shorrocks (1978) observed that in general MO conflicts with PM. But because MO is not a
 relevant property for predictability measures, the latter will be unaffected by any inconsistency
 of this sort.

 9. See also King (1983) and Chakravarty (1984) for mobility measures based on the 're-ranking'
 of individuals within income distributions. Re-ranking involves individuals switching places in
 the distribution, which is taken as prima facie evidence of movement mobility.

 10. One implication of this is that predictability measures will not in general be coherent with the
 type of welfare orderings characterized by Dardanoni (1993), since the latter are based
 explicitly on a particular ('bad' to 'good') state ordering.

 11. For a full discussion, see e.g. Mardia et al. (1979, p. 41).
 12. It is interesting to compare in this respect the favoured non-Markovian income mobility

 measure of Fields and Ok (1993), which is also an increasing function of the sample (or
 population) size. As here, those authors also proposed a complementary per capita measure
 that controls for the sample size. We are grateful to an anonymous referee for emphasizing the
 importance of the sample size issue.

 13. Shorrocks does suggest some measures that satisfy the less demanding condition of 'period
 invariance'. In obvious notation, period invariance is defined as UpI(P; T) = UpI(PS; sT), for
 s = 2, 3, ....

 14. We are grateful to an anonymous referee for emphasizing the points raised in this paragraph.
 15. Adaptation of Harbury and Hitchens's tabulation was needed to group the data on a common

 basis for sons and fathers, and to calculate the numbers of fathers starting in each state. An
 additional table given by Harbury and Hitchens (table 3.7a) provided the latter information,
 but for only three states and with a smaller sample size.

 16. Another important (income mobility) movement measure has been proposed by Fields and Ok
 (1996). However, these authors show that a version of their measure is related to
 Bartholomew's; the 'raw' Harbury-Hitchens data required for computing their non-
 Markovian measure is unavailable.

 17. Other grounds for supposing 0.89 to indicate 'relatively high mobility' come from comparisons
 with S values reported in other studies. These include Atkinson et al. (1983) and Dearden et al.
 (1997), though these studies analysed income rather than wealth groups.
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