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 Opportunity and Social Mobility
 CHRISTOPHER PHELAN

 Federal Reserve Bank of Minneapolis and University of Minnesota

 First version received June 2004; final version accepted October 2005 (Eds.)

 This paper argues that both unequal opportunity and social mobility are necessary implications of
 an efficient societal arrangement when incentives must be provided.

 1. INTRODUCTION

 The fact that the children of rich parents have better economic prospects than the children of
 poor parents ("unequal opportunity") is generally thought to be one of the weak points of mod-
 em capitalist societies. The ability of the descendants of poor families to eventually become rich
 and the descendants of rich families to eventually become poor ("social mobility") is commonly
 considered to be one of the strong points of these societies. Here, I argue that both of these char-
 acteristics are, in fact, necessary implications of an efficient societal arrangement when incentives
 to work hard must be provided.

 I argue this point using a generational version of the model of Phelan and Townsend (1991),
 an infinitely repeated, general equilibrium economy with incentive constraints. In my model,
 each household's stochastic output is a function of its level of effort. Since effort is assumed to
 be costly and privately observed (households can shirk), higher than minimal effort levels must
 be induced by making a household's present or future consumption dependent on the household's
 observed output history.

 A large literature considers models similar to this (including Green, 1987; Atkeson and
 Lucas, 1992; Phelan, 1994, 1995; Wang, 1995; Hopenhayn and Nicolini, 1997; Khan and
 Ravikumar, 2002). The main difference between the economies in that literature and here is that

 here, instead of a household consisting of a single infinitely lived individual, a household consists
 of a sequence of altruistically linked individuals (a familial dynasty), each of whom lives for one
 period.

 This difference affects the appropriate societal ranking of allocations. When households
 consist of a single infinitely lived individual, allocations can be ranked according to their im-
 plied distributions of ex ante lifetime utilities. (If one allocation delivers a distribution of ex ante
 utilities dominated by another allocation, then the first allocation is inefficient.) However, if a
 household consists of a sequence of altruistically linked individuals, then the appropriate ranking
 of allocations is no longer obvious. How those in the first generation rank allocations will, in
 general, differ from how their descendants rank allocations.

 This paper addresses this conflict between generations by ranking allocations according
 to a Rawlsian veil-of-ignorance criterion (Rawls, 1971). That is, here, society seeks to max-
 imize the expected dynastic utility (utility including altruism toward descendants) of an in-
 dividual who does not know into which generation he will be born and the identity or
 output levels of his ancestors.1 I argue that this corresponds to a societal ranking, which does

 1. Freeman and Sadler (2002) use a similar objective function. They consider whether an optimal policy can be
 decentralized through inheritances.
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 488 REVIEW OF ECONOMIC STUDIES

 not discount the future, even though individuals in the society at any given time do discount
 it. I show this ranking transforms the social planning problem into one of directly choosing
 the stationary distribution of dynastic utilities, as well as functions for determining effort
 levels, consumption, and a child's position in this distribution as a function of his parent's
 output. This transformed problem is a static social choice problem and is thus a major sim-
 plification.

 An immediate result of this societal ranking of allocations (zero discounting) is that effi-
 ciency immediately implies a finite amount of inequality in the limit. That is, in previous papers
 such as Atkeson and Lucas (1992) (which rank allocations according to their ex ante lifetime
 utilities), efficiency implies inequality grows over time without limit. Limited resources, concave
 utility, and forever growing inequality imply that mean utility is forever decreasing. Thus, while
 optimal from an ex ante perspective, an allocation with forever growing inequality is not only not
 efficient, but in fact, the worst one can do if, as in this paper, society does not discount. (Papers
 subsequent to this paper by Farhi and Werning (2005) and Sleet and Yeltekin (2005) general-
 ize this result. That is, they show a much weaker assumption than zero societal discounting is
 sufficient to ensure finite limiting inequality. Essentially, they show that as long as the societal
 ranking puts greater weight on future generations than that implied by the altruism of the first
 generation, finite limiting inequality will hold.)

 My first main theorem is that a society using this ranking will always choose the distribution
 of dynastic utilities to be non-degenerate; in other words, it will choose unequal opportunity.
 Some individuals will be born relatively poor (fated to receive relatively low consumption for
 each output realization) and some will be born relatively rich, even though equal opportunity is
 feasible. This occurs because it helps with the provision of incentives to make a child poorer if
 his parent realizes a low output level and richer if his parent realizes a high output level. This, in
 a sense, extends the result of Rogerson (1985) to a generation context.

 My second main theorem, subject to a condition which can be proved for specific functional
 forms for utility, is that society will choose to have social mobility. It will never choose to have a
 caste system with one group of families having relatively high average consumption and another
 having relatively low consumption and with no ability for a family to move between groups.
 Instead, no matter how poor or rich a parent is, eventually, the expected consumption of that
 person's descendants equals the unconditional expectation.

 The basic intuition behind the first result, unequal opportunity, is that there is zero loss,
 at the margin, from allowing some dependence of a child's consumption on his parent's out-
 put realization. However, a positive marginal benefit results from relaxing the incentive con-
 straints on parents by making a child's future consumption depend on his parent's output
 realization. The basic intuition behind the second result, social mobility, is that a society with
 multiple castes simply requires more resources to deliver a given mean utility than a single-caste
 society.

 After stating and proving these main theoretical results for a general, additively separable
 utility function, I discuss specific functional forms for utility and computation. Next I show that
 computation of the optimal stationary distribution of dynastic utilities (along with the functions
 determining consumption and mobility) consists of solving a single linear program. Finally, I
 present a computed example and compare it to the static optimum and the optimal allocation
 when allocations are ranked by ex ante utility, as opposed to limiting, dynastic utility.

 At the end, I discuss the generality of these results. I argue that my results do not depend on
 the particular type of incentive problem discussed here (unobserved effort). My results can apply
 to unobserved endowment models such as that of Green (1987), unobserved preference shock
 models such as that of Atkeson and Lucas (1992), and unobserved production models such as
 that of Khan and Ravikumar (2002).

 ? 2006 Federal Reserve Bank of Minneapolis
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 2. THE BASIC MODEL

 Consider the following economy. In each time period, t E {0,..., 00o, the economy is populated
 by a unit mass continuum of identical, infinitely lived households. There is a single consumption
 good. If a household exerts an effort level a e A = {ao, ... , aaN}, then its output (in terms of the

 consumption good) q e {qo,, ..., qM} occurs with probability P (q la). Assume that P (q Ia) > 0 for
 all (q, a) eQ x A and that there exists (q, q) e Q2 such that if ai < aj, then P (-qlai) < P (-qlaj)
 and P(q ai) > P (qlaj). That is, the probability of one outcome (say, the highest) is increasing
 in a, and the probability of another outcome (say, the lowest) is decreasing in a. Households are
 assumed to be able to privately exert effort less than that specified by the allocation. That is, they
 can shirk.

 Household utility in period t is determined by the function U (ct, at) = u (ct) - v (at), where
 ct E C is the household's period t consumption. (The consumption set C is assumed convex.)
 The function u is assumed to be unbounded below, twice differentiable with u' > 0 and u" <

 0. For ai < a j, (ai) is assumed to be strictly less than v (aj). Over time and uncertainty, a
 household cares about the expected value of (1 - f) Oo1pt U(ct, at), where /f e (0, 1). Let
 V = {u(c) - v(ao) Ic cEC).

 Define the efficient symmetric static allocation (a*, c* (q)) as the solution to

 max 1:P(qla)u (c(q))- v(a)
 a,c(q)

 subject to a static resource constraint

 1:P(qla) (c(q)-q) < 0
 q

 and the static incentive constraint (for a < a)

 1P(qla)u (c(q))- v (a) > :P(q a)u (c(q))- t(a).
 q q

 2.1. Dynamic allocations

 Let a dynamic allocation (or simply an allocation) (To, {at (wt), ct (wt, qt), wt+l (Wt, qt) t=o0) be defined recursively as a measure of initial lifetime utilities, To, and a sequence of func-
 tions at (wt), ct(wt, qt), and wt+1 (wt, qt). The function at(wt) specifies the recommended effort
 level for a household that starts period t with a continuation expected utility of wt. The function
 ct (Wt, qt) specifies the non-negative consumption of a household that starts period t with a con-
 tinuation expected utility of wt and realizes output qt. The function wt+1 (wt, qt) specifies the
 continuation expected discounted utility at the beginning of period t + 1 of a household which
 starts period t with a continuation expected utility of wt and realizes output qt.
 Note that through the initial distribution of forward-looking utilities To, and the functions

 at (wt) and wt+1(wt, qt), an allocation determines, for all t > 1, the period t distribution of
 forward-looking utilities Yrt.

 An allocation is said to satisfy promise keeping if, for all t and tot,

 wt = P(qtlat(wt))((1 -/!)[u(ct(wt,qt)) -v(at(wt))] +/wt+l(wt,qt)). (2.1)

 In words, promise keeping requires that expected dynastic utility of an allocation conditional
 on wt is actually wt. Next, an allocation is said to be incentive compatible if, for all t, wt, and

 @ 2006 Federal Reserve Bank of Minneapolis
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 490 REVIEW OF ECONOMIC STUDIES

 a < at (wt),

 wt > P(qt I a)((1 - P)[u(ct(wt, qt)) - t(a )] + wt+l (wt, qt)). (2.2)

 Here, the L.H.S. is the dynastic utility associated with taking action at (wt), and the R.H.S. is the
 dynastic utility associated with taking an alternative action a < at (wt). Finally, an allocation is
 said to be resource feasible if, for all t,

 0 > j P (qlat(wtt)) [c(wt,,q)--q] dYt(wt). (2.3) V q

 Condition (2.3) requires that aggregate production be weakly greater than aggregate consump-
 tion. A dynamic allocation is considered feasible if it satisfies all three of these conditions
 (2.1)-(2.3).2

 2.2. Ranking feasible allocations

 In most dynamic contracting work, a household consists of a single infinitely lived individual
 who discounts the future by #.3 Given this, an allocation is considered efficient if it is feasi-
 ble (satisfies promise keeping, incentive compatibility, and resource feasibility) and if no other

 feasible allocation delivers a distribution of initial utilities which dominates To.
 In models similar to this one, Atkeson and Lucas (1992) and Phelan (1994) derive several

 implications of this type of efficiency. First, these studies show that an efficient allocation must,
 household by household, minimize the discounted resource cost of delivering a given ex ante
 utility wo and that this resource cost is a convex function of wo. Thus, a society maximizing

 mean ex ante utility would choose a degenerate measure of initial utilities To with all mass on
 the same point.4 Second, these studies show that efficiency, by this definition, implies extreme
 results regarding the limiting distribution of consumption and utility. In the model of Atkeson and
 Lucas (1992), almost all consumption paths go to 0, and mean utility goes to the lower bound
 of the set of possible utilities (either 0 or -oo, depending on the level of risk aversion). In the
 model of Phelan (1994), the variance of consumption grows without bound, and thus mean utility
 becomes infinitely negative.

 Here, I consider a different ranking of allocations, supported by the following assumption.
 Instead of a household consisting of a single infinitely lived individual, suppose that a household
 consists of a sequence of altruistically linked individuals, each of whom lives for one period.
 Specifically, assume that the dynastic utility of an individual born in period t consists of weight

 1 - P on his own direct utility U (ct, at) and weight f on the dynastic utility of his single child.
 Thus, the dynastic utility is

 tot = P(qrla,(wt))[(1 - f)U(ct(owr,qt),at(wt))+w lt+l(wtt,qt)].
 qt

 2. The recursive formulation also requires a no-Ponzi scheme condition to ensure that arbitrarily high dynastic
 utilities are not delivered by promising ever-higher future dynastic utilities. One sufficient condition is that for all t, mean
 dynastic utility be weakly less than u (qM) - o (aG), the utility of every day consuming the highest output level and taking
 the lowest effort.

 3. See Green (1987), Phelan and Townsend (1991), and Atkeson and Lucas (1992) among many others. An ex-
 ception is Freeman and Sadler (2002).

 4. Ranking allocations by mean ex ante utility is equivalent to maximizing the utility of a household that does not
 know where in distribution TO it will be, but instead sees itself as having the same probability as all other households of
 being in any subset of the support of To.

 @ 2006 Federal Reserve Bank of Minneapolis
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 PHELAN OPPORTUNITY AND SOCIAL MOBILITY 491

 (This is equivalent to the individual putting weight 1 - P on his own direct utility, /3(1 - P) on
 his child's direct utility, p2(1 - P) on his grandchild's, and so on.) With this composition of
 households, the set of feasible allocations is identical to that which holds if households consist
 of a single infinitely lived individual. However, the appropriate ranking of allocations is no longer
 obvious. Maximizing ex ante dynastic utility puts no direct weight on the utility of generations
 born later than period t = 0. These later generations enter the social calculus only indirectly,
 through the altruism of those born in period t = 0. Pareto efficiency, rather than putting all weight
 on the first generation, would allow any arbitrary weighting scheme across generations.

 This paper considers an alternative extreme of equal weighting of all generations, or, put

 differently, zero societal discounting. Formally, let vt = y t t dTt (Wt) and = liminfToc T+1

 y-T-0 t.5 In words, Vt is the average utility, including altruism toward children, of individuals born in period t and T is the limiting average of this average over dates. Instead of ranking
 allocations by vo, allocations can be ranked by u. Since the number of periods is infinite, such a
 weighting scheme puts zero weight on the first T periods (regardless of T). (Of course, one can
 admit intermediate weighting schemes where later generations have positive direct weight, but

 later generations have successively less weight. That is, one could rank allocations by =0o 6tt,
 where 5 < 1. Two recent papers by Farhi and Werning (2005) and Sleet and Yeltekin (2005) build
 on this work and consider precisely this intermediate case.)

 It is useful to establish that a plan which maximizes limiting mean utility, -, minimizes
 limiting mean resources. Attention will then be mostly restricted to cost minimizing, rather
 than mean limiting utility maximizing allocations. To this end, for 4 = (lo, {at (Wt), ct (Wt, qt),

 Wt+1 (wt, qt)) }'0), let

 St () = P (qlat(wt)) [c(wt, q) - q] dTYr(wt)
 V q

 and
 T

 S(C) = limsup St (T+)
 T-oo T + 1 t=

 Call the primal problem max- liminfTr , oo1 -t=0,vt subject to (2.1), (2.2), and (2.3). Call the

 dual problem min( S(() subject to V _< liminfT,-, 1 T0 fo f w d't (w) and constraints (2.1) and (2.2).

 Lemma 1. If allocation solves the primal problem with objective function value V, it
 solves the dual problem with S (C) = 0 when limiting average utility must equal -.

 Proof Relegated to Appendix. II

 2.3. Stationary allocations

 Let a stationary allocation be defined as a dynamic allocation where for all t and s, (Tt, at (w),
 ct (w, q), w41(wn, q)) = (s, as (7w), cs (w(, q), w 1 )(w, q)). Alternatively, a stationary allocation
 is a collection r = (', a(wO), c(wo, q), w'(wo, q)) such that for all subsets W E (V),

 1(W) = J P(ql a(w)) I(w'(w, q) e W)dP(w), (2.4)
 V q

 5. An earlier version ranks allocations by limT*o T1T- _ tT=O-t, but this limit may not exist. A standard approach in game theory to implementing zero discounting is ranking by the liminf. (See Fudenberg and Tirole, 1991,
 p. 148.) The author thanks an anonymous referee for pointing out the error.

 @ 2006 Federal Reserve Bank of Minneapolis
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 492 REVIEW OF ECONOMIC STUDIES

 where I (.) is the indicator function and 4.(V) denotes the Borel subsets of V. Here, the L.H.S.
 is the mass of households on set W today, and the R.H.S. is the mass of households on set W
 tomorrow.

 A stationary allocation satisfies promise keeping if for almost all w relative to T,

 w = -I P(qla(w))((l - f)j[u(c(w, q)) - v(a(w))] +wto'(w, q)). (2.5) q

 In words, condition (2.5) requires that the functions a((w), c(w, q), and w'(w, q) actually deliver
 dynastic utility w.

 A stationary allocation is considered incentive compatible if for almost all w relative to '
 and all a < a (w),

 w > I P(qIa-)((l -fP)[u(c(w, q)) - v((a)] +pw'(w, q)). (2.6)
 q

 As before, the L.H.S. is the dynastic utility of taking action a(w), and the R.H.S. is the dynastic
 utility of taking alternative action a^.

 Finally, a stationary allocation satisfies resource feasibility if

 0 > f IP(qla(w))[c(w, q)-q] duf(w). (2.7) V q

 Call the stationary primal problem maxy fV w duYI(w) subject to (2.4)-(2.7). Call the
 stationary dual problem minj fV Eq P (qla(w)) [c(w, q) - q]d (T(w) subject to (2.4)-(2.6) and
 the mean utility constraint v < fv w d T(w).

 The next lemma shows that without loss, attention can be restricted to stationary allocations.

 This is a major simplification since the stationary primal and dual problems are static optimiza-
 tions. The main idea behind the proof is that any dynamic allocation for which 't does not

 converge can be used to create another dynamic allocation where tP does converge, where the
 difference in cost between the two allocations is arbitrarily small. Once attention can be restricted

 to allocations where 't converges, given zero discounting ranking of allocations, restricting
 attention to stationary allocations is immediate.

 Lemma 2. Suppose = (P, a(w), c(w, q), w'(w, q)) solves the stationary dual problem.

 Then (To - P, {at (wt) = a (wt),ct (wt,q t) = c(wt, qt), w (tot,q t) = (wt, qt)} ) solves the
 dual problem.

 Proof Relegated to Appendix. I|

 3. CHARACTERIZING OPTIMAL ALLOCATIONS

 This section presents the main results of the paper: unequal opportunity and social mobility
 are necessarily characteristics of an optimal allocation. Showing this requires several supporting
 lemmas (with again the proofs relegated to Appendix).

 Lemma 3. If a stationary allocation 4* = ('P*, a*(w), c*(w, q), o'* (wo, q)) solves the sta-

 tionary primal problem, then f q P (q a * (o)) [c* (w, q) -q ] dP* (w) = O. Likewise, if station-
 ary allocation r* = ('P*, a* (w), c* (w, q), w1, (w, q)) solves the stationary dual problem, then the

 mean utility constraint - < f w dY'* (w) holds as an equality.

 @ 2006 Federal Reserve Bank of Minneapolis
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 PHELAN OPPORTUNITY AND SOCIAL MOBILITY 493

 Given that the resource constraint (2.7) binds in the stationary primal problem and the mean
 utility constraint binds in the stationary dual problem, it is straightforward to show that a plan
 that maximizes mean utility minimizes the cost of providing any given mean utility, and vice
 versa. Thus, the second supporting lemma is the following.

 Lemma 4. Suppose a stationary allocation 4* solves the stationary primal problem, and

 let v = fV w dsT* (w). Then ?* solves the stationary dual problem

 C (-) = min P (q la(uw))[c(w, q) - q] dug(w) (3.8) TP,a(w),c(w,q),'0(uw,q) J
 V q

 subject to (2.4)-(2.6), and

 V <Jw d uY(w), (3.9)
 V

 with C(5) = 0. Likewise, if * solves the stationary dual problem with C(0) = 0, it solves the
 stationary primal problem.

 3.1. Opportunity

 Lemma 4 allows for the first main result that an optimal plan will always exhibit unequal oppor-
 tunity. (Some individuals are born with lower expected dynastic utility than others.) The general
 strategy of the proof is to assume that all incentives are static-that all individuals are born with
 a blank slate-and show that the cost of introducing a small amount of dependency of children's
 consumption on parents' outcomes is second order, while the benefit, or gain, from this depen-
 dency (which allows for the better provision of incentives to parents) is first order.

 Theorem 1. Suppose * = (w*, a* (w), c* (w, q), w'* (w, q)) solves the stationary dual
 problem. Then Y * is non-degenerate.

 Proof The strategy of this proof is similar to that in Rogerson (1985): suppose no links
 across periods and show that there exists an improving perturbation. (The model of this paper is
 sufficiently different from the model in Rogerson (1985) that this proof needs a different perturba-
 tion from that in Rogerson (1985).) To this end, suppose T* is degenerate with all mass on point

 wt*. Let a* = a*(w*). Define an alternative allocation = (T, a(w), c(w, q), w'(w, q)). First, let
 Y put mass 1 - P (q Ja*) - P(qja*) on point w*, mass P (q la*) on point w = wo* - E/P/(qla*),
 and mass P(qla*) on point = w* + E/P(q4a*). By construction, then Swfv dP(w) =

 fv w d* (wo) = tw*; thus, ? satisfies condition (3.9) for - = wt*. Next, assume for wo E {w, w*, w-} that a(w) = a*. This ensures that aggregate production is unchanged.
 Next, let w'(w, q) = w, w'(w, ) = w, and for q 0 {q, q}, w'(w, q) = w*. This ensures

 (for all e) that stationarity (2.4) is satisfied. Lastly, define the functions c(w, q) for (w, q) e

 {w, w*, w} x Q. To do this, for all q, let c(wo*,q) be such that u(c(w*,q)) = u(c*(w*,q))+

 A(wo*, q). Next, let c((w, q) be such that u(c(_, q)) = u(c*(w*, q)) - e/[(1 - fl)P(qla*)] + A(w,q). Finally, let c(-,q) be such that u(c(-,q)) = u(c*(w*,q)) +c/[(1 -fP)P(qJa*)] +
 A (T, q). Since the original stationary allocation (* is optimal, choosing E = 0 and A (wo, q) = 0
 for all (w, q) e {to, w*, w} x Q must minimize equation (3.8) subject to the promise-keeping
 constraint (2.5) and the incentive-compatibility constraint (2.6).

 Note that the incentive constraint associated with w = wo* in this restricted optimization
 problem binds; thus, the marginal value of loosening it is strictly positive. To see this, consider

 @ 2006 Federal Reserve Bank of Minneapolis
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 choosing E and A (w, q) to minimize (3.8) subject to the promise-keeping constraint (2.5) but not
 the incentive constraint (2.6). Here, I can strictly improve on * by setting e = 0 and A (w*, q)

 such that c(w*, q) = -q P (q Ja*)c* (w*, q) (full-consumption insurance) less a constant to com-
 pensate for the utility gain associated with full insurance. (Recall the assumption that a* > ao.
 Thus, full-consumption insurance is not attained by 4*.)

 Now set A (w, q) = 0 for all (w, q). This ensures that the promise-keeping constraint (2.5)

 holds for all e. Thus, a choice of e 0 affects only the incentive constraint (2.6) and the dual
 objective function (3.8).

 For wo e { , w*, w-}, the derivative, with respect to E, of the L.H.S. of the incentive constraint
 minus the derivative of the R.H.S. equals /8[P(qla)/P(-qla*) - P(q l)/P(qla*)]. This derivative
 is a strictly negative constant (not a function of e) for all ai < a*, and thus, the incentive constraint
 for each w is loosened as e increases.

 Finally, let u-1 (u) denote the consumption payment necessary to deliver utility u(c). The
 dual objective function with the definition of and A (w, q) = 0 substituted in is then

 P(qla*) P(qla*) u-' u(c*(w*,q))- -q q ? ( P(q |a*))
 +P(q-la*)~ P(qla*) u-1 u(c*(w*,q))+ -C , q

 +[1- P(qla*) - P(qla*)] P(qla*)[u-l (u(c*(w*, q)))- q].
 q

 The derivative of this expression with respect to e is

 - P(qla*)u-l' u(c*(wo*,q))- P(qla*) q

 + P(q a*)u-1 u(c*(wu*,q))+ .

 This derivative equals 0 for c = 0. Thus, the marginal value of increasing e when C = 0
 and A (w, q) = 0 is strictly positive since it loosens a binding constraint (a first-order benefit)
 with zero first-order effect on the objective function, contradicting the optimality of the original
 allocation. II

 3.2. Social mobility

 Note that an allocation r = (I, a(w), c(w, q), w'(w, q)) defines not only the distribution of dy-
 nastic utilities, I, but also the rules under which households move up or down this distribution.
 Thus, the answers to questions regarding social mobility are embedded in 4. (Can the descen-
 dants of poor, or low w, households eventually become rich?) Now, I consider to what extent
 the efficiency of r implies social mobility. In particular, I argue that social mobility is a direct
 implication of strict convexity of the cost function C(iJ).

 To allow a strict definition of social mobility, let a set W e ,(V) be called a caste under stationary allocation 4 if P(W) > 0, and

 P(W)= J P(ql a(w))I(w'(w, q) e W)dW(w), (3.10)
 W 2

 @ 2006 Federal Reserve Bank of Minneapolis
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 which implies a zero exit and entry probability from W. A caste W is called trivial (relative to 4)

 if T (W) = 1 or if f, w dI (w) = fwc w dT (w), where WC denotes the complement of W. Thus, for a caste system to be non-trivial, its complement must have positive mass, and the mean utility
 of those in the caste must differ from the mean utility of those outside the caste.

 My main theorem here is that if C(TV) is strictly convex (a condition shown in the next
 section for particular functional forms), then any caste system must be trivial. That is, having a
 permanently richer group and a permanently poorer group is never optimal.

 Theorem 2. Suppose C(T) is strictly convex and a stationary allocation = = (I, a((w),
 c(wo, q), w'(w, q)) minimizes (3.8) subject to (2.4)-(2.6) and (3.9)for 5 = fto wTw(w). Then any
 caste W relative to is trivial.

 Proof Let W1 be a caste relative to 4. If I (W1) = 1, then the result is proved; thus, as-

 sume that 'P(W1) < 1. Let W2 = Wf. Like W1, the set W2 is also a caste. Define two separate
 allocations ?i, i E {1,2}, by choosing Ti such that for all W c Wi, Ti(W) = I(W)/T(Wi)
 and leaving the functions a(w), c(w, q), and w'(w, q) unaltered. (That is, proportionally put
 all mass on one set or the other, but otherwise change nothing.) These allocations each satisfy
 promise keeping and incentive compatibility since the original allocation satisfies these con-
 ditions, and each satisfies stationarity since W1 and W2 do not communicate and the original
 allocation satisfied stationarity. Put less formally, the fact that the sets W1 and W2 do not com-
 municate implies that how those in each set are treated defines a feasible allocation for treating
 all of society. Thus, each allocation must minimize (3.8) subject to (2.4)-(2.6) and (3.9) for
 wv = wi, where wi = [1/ T(Wi)] fV wodTi (to), i E {1,2}. If another allocation satisfies (2.4)-(2.6)
 and (3.9) at a lower cost, then the original allocation ? could not have been optimal, since this
 lower cost allocation could have been incorporated into the original allocation, lowering its cost.

 Finally, if wl - w2, then the strict convexity of C implies that C(YT(WOi)wi + TY(W2)W2) <
 P(W1)C(wl) + Y(W2)C(w2). Since the R.H.S. of this inequality is the resource cost of the
 original plan, wi = t2. II

 4. FUNCTIONAL FORMS

 Here, I introduce two explicit functional forms for U (c, a). These functional forms allow me to
 solve for C (~) (up to a constant) and thus prove the strict convexity assumed by Theorem 2.
 Further, they allow for a relatively complete characterization of the optimal allocation when
 allocations are ranked by ex ante utility, as opposed to limiting, mean utility; they thus help
 highlight the effect of ranking allocations by the mean of the limiting distribution of dynastic
 utilities. While these examples are not additively separable (as the earlier sections assumed),
 Lemmas 1 and 2 and Theorem 1 can be proved using arguments similar to those used earlier.

 The simplest example has U(c, a) = - exp(-y [c - v (a)]) with consumption unbounded
 (or c e R) and y > 0-the constant absolute risk aversion (CARA) utility specification in Phelan
 (1994). Given this utility function and consumption set, Phelan (1994) shows that if allocations
 are ranked by mean ex ante utility, optimality implies that at is constant across households and
 time (thus, so is aggregate production), and household consumption is the sum of an independent
 and identically distributed random variable and a term which follows a driftless random walk.
 Since effort is constant and utility is a concave function of consumption, as the cross-sectional
 variance of consumption increases due to the random walk term, mean dynastic utility decreases
 over time without bound. In essence, the optimal allocation from an ex ante perspective implies
 a limiting distribution of dynastic utilities which has all mass on negative infinity. However, that
 is the worst possible allocation when allocations are ranked, as they are here, by the mean of the
 limiting distribution of dynastic utilities. (Theorem 1 shows that a finite mean limiting utility can,
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 in fact, be achieved, since one can do better than repeating the static optimum, which itself has a
 finite mean utility.)

 Assuming this specific functional form also allows me to show that C(V) is strictly convex,
 as assumed by Theorem 2. This is shown in the following lemma:

 Lemma 5. If U(c, a) = -exp(-y [c - v(a)]) with c IR and y > 0, then for v < 0,

 C(-) min P(qla(w))[c(w, q) - q]dT(w) (4.11) Tl,a((w),c(to,q),w'(w,q)  v q

 subject to (2.4)-(2.6) and (3.9) satisfies C (-) = - log(--)/y + C(- 1) and is thus strictly convex.

 Proof See Appendix. I|

 With some extension of the model, I can construct tractable example economies that do
 not depend on CARA utility. In particular, following Atkeson and Lucas (1992), Khan and
 Ravikumar (2002), and Phelan (2002), let household output equal kq, where k is the quantity
 of land allocated to the household for use in production for that period. Let v (a) denote the per-
 acre utility loss to effort, and thus, let ko(a) denote the total utility loss to effort a. Finally, let
 utility be the constant relative risk aversion (CRRA) specification U(c, a, k) = [c - kv(a)]V /y ,
 where y = 0 implies that U(c, a, k) = log[c - kv (a)]. With this specification, if allocations are
 ranked by ex ante utility, almost all household consumption paths converge to 0, the result of
 Atkeson and Lucas (1992) for a preference shock model. This implies that the limiting distribu-
 tion of dynastic utilities has either all mass on 0 (for the case of y > 0) or all mass on -oo (for
 the case of y < 0). Here, as in the previous example, if allocations are ranked by the mean of the
 limiting distribution, analogues of Lemmas 1 and 2 and Theorem 1 can be proved.

 Introducing land to the model introduces an additional resource constraint into the primal
 problem. Not only must society not allocate more of the consumption good than is available
 from production, it must also not allocate more land to households than is exogenously given.
 However, if society is assumed to be able to trade land for the consumption good at a linear price
 p (which can be set equal to the ratio of the Lagrange multipliers associated with the separate
 resource constraints), then I can prove that C (-) is convex. This is shown in the following lemma.

 Lemma 6. If U(c, a, k) = [c - kv (a)]y /y with c > kv(a), then

 C(~) = m inpk(w)+ P (qja(w)) [c(w,q)-q] dY(w) (4.12)
 T,k(uw),a (w),c(w,q), w'(tw,q) V (q V

 subject to (2.4)-(2.6) and (3.9) satisfies C(-) = -I/y C(1) if y > 0 (and thus - > 0), C(J) =
 exp(iT)C (0) if y = 0, and C (-) = (--v) l/Y C (- 1) if y < 0 (and, thus, - < 0). In each case, C (0)
 is strictly convex.

 Proof See Appendix. II

 5. COMPUTATION

 My approach of directly choosing the stationary allocation simplifies computation as well. In
 particular, if ' is restricted to a finite support, then an optimal stationary allocation can be com-
 puted as a single linear program along the lines of Prescott and Townsend (1984). While the
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 incentive constraints capture the dynamic decision of households, the choice of how to organize
 society given those constraints is static; thus, dynamic programming along the lines of Phelan
 and Townsend (1991) or Atkeson and Lucas (1992) is not needed.

 The linear program is set up as follows. Let V c V be a finite grid of points in V restricting
 the support of I. Next, let C be a finite grid of points restricting the range of c(w, q). (The func-
 tion a (w) has already been assumed to have a finite range.) The key to transforming the choice
 of the stationary allocation into a linear program is to combine the measure Y (now restricted to

 a finite support) with the rules a(w), c(w, q), and '(w, q). That is, let uP(w, a,q,c, to') be the
 fraction of households who start at point w e V, receive action recommendation a E A, experi-
 ence output realization q e Q, get consumption level c e C, and transit to point w' c V.

 Choosing , (w, a, q, c, w') for all (w, a, q, c, o') e V x A x Q x C x V pins down (I, a(w),
 c(w, q), w'(w, q)) if y (w, a, q, c, w') satisfies several linear conditions. First, the fractions ya (w,
 a, q, c, w') must add to 1, or

 I iU(w,oa,q,c, ') = 1. (5.13) w,a,q,c,w

 Next, the fraction of households that realize output q must coincide with the fraction deter-
 mined by the technology P (q Ia). This can be enforced by requiring that Bayes' rule holds for all
 (w, a,q)e V x Ax Q:

 >u(w,'a, q, c, w'') = r(ql) Y ,u(w,ca, q,c, w'). (5.14) c, W q,c, w'

 The objective function, stationarity, the promise-keeping, incentive-compatibility, and resource-
 feasibility constraints are, like the previous conditions, linear in the choice variables. The primal
 objective function becomes

 SU(w,'a,'q,'c, w')"w. (5.15) w,a,q,c,w'

 A collection /u (w, a, q, c, w') is stationary if for all w e V, the fraction of households at w is the
 same today and tomorrow, or if for all wT e V,

 Y y(w,a,q,c, w')= Y y(w,a,q,c,w). (5.16)
 a,q,c,w' w,a,q,c

 Promise keeping requires that, for all w e V,

 Si(wo, a,q,c, w')[(1 -f)u(c,a) +wl' - w] = 0. (5.17) a,q,c,w'

 Incentive compatibility requires that, for all (w, a, a < a),

 p (w, a, q, c, w')[(1 - p)u(c,a) + pw']
 q,c,w'

 P (qg la)

 > p (w, a, q, c, w')[(1 - f)u(c, ') + JW'](qa) (5.18) q,c,w'

 Finally, the resource-feasibility constraint is satisfied if and only if

 p ff(w,a,q,c, w')(c-q) < 0. (5.19) w,a,q,c,w'
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 FIGURE 1

 The distribution of dynastic utilities, I

 6. AN EXAMPLE

 Now I present an example economy computed using the methods just outlined. For this example
 economy, I also compute the solutions to the static optimum and the optimum when allocations
 are ranked by ex ante dynastic utility and compare those solutions to that when allocations are
 ranked by the mean of T, the stationary distribution of dynastic utilities.

 In the example, these are the parameter values used: a e {0, 11, q e {0, 11, f = 2/3, and
 U(c, a) = - exp(-(c - 0.3a)). The high output (q = 1) occurs with probability 3/4 if a = 1 and
 probability 1/4 if a = 0.6

 Figure 1 displays I, as well as the utility levels associated with the static optimum, the
 mean of I, and the dynastic utility of the first generation when allocations are ranked by their ex
 ante dynastic utility. (The ex ante optimal allocation has a degenerate limiting distribution with all
 mass at -oo.) Since the static optimum is a feasible but suboptimal stationary allocation, its value
 is strictly lower than the mean of T. Since the optimal stationary allocation is a feasible allocation
 when stationarity is not imposed, the mean of I is strictly lower than the utility associated with
 the optimal ex ante allocation.

 For all w in the support of I, a (w) = 1. (Thus, this function is not graphed.) Figure 2
 presents the function c(w, q). Not surprisingly, c(w, q) is increasing in both arguments. Fur-
 ther, for a household receiving the dynastic utility associated with the static optimum, c(w, q)
 provides less dependence of consumption on current output q than does the static plan. For a
 household receiving the dynastic utility associated with the ex ante optimum, c(w, q) provides
 more dependence of consumption on current output than does the ex ante optimum.

 Neither of these characteristics is surprising. That the optimal stationary allocation has less
 dependence of current consumption on current output comes entirely from the fact that in the
 static optimum, all incentives must be provided through such dependence, while the optimal
 stationary allocation allows for incentives to be provided through the function w'(w, q) as well.
 That the optimal stationary allocation has more dependence of current consumption on current
 output than does the ex ante optimal plan comes from the fact that future generations mat-
 ter more to society when ranking allocations by mean limiting utility than by ex ante utility.
 Having a household's consumption depend on its ancestors' output costs society because utility

 6. The parameters specific to the computation method are as follows: V = {-0-90, -0-88,..., -052, -0-501
 and C = {-0.20, -0-18,..., 1-02, 1-041. The program was written in C using the GNU compiler and the GNU linear
 programming package. While the resulting linear program has 111,132 variables and 106 constraints, it solves on an
 Apple 867 MHz PowerBook G4 in under four minutes.
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 The consumption function, c(w, q)
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 The utility transition function, w'(w, q)

 is a convex function of consumption. However, such a dependence helps relax the incentive con-
 straints on parents (Theorem 1). The more future generations enter the objective function of
 society, however, the costlier such inter-generational dependence, and, thus, the less this manner
 of providing incentives is used.

 Figure 3 presents the transition function w'(w, q). Like the function c(w, q), the function
 w'(w, q) is increasing in both arguments. The transition function w'(w, q) provides more de-
 pendence of future dynastic utility on current output q than does the static optimum, since, by
 definition, the static optimum allows for no such dependence. For a household receiving the dy-
 nastic utility associated with the ex ante optimum, w'(w, q) provides less dependence of future
 dynastic utility on current output than does the ex ante optimum, precisely because c(w, q) is
 more sensitive to current output than is the ex ante optimum.
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 7. CONCLUDING REMARKS

 The results here should generalize to environments other than unobserved effort. The idea that at
 perfect equality the marginal cost of unequal opportunity is second order but the benefits are first
 order appears quite general. The result on social mobility should hold for any incentive model in
 which the resource cost of providing a mean dynastic utility is strictly convex. For instance, an
 earlier version of this work proves Theorems 1 and 2 for the taste shock model of Atkeson and
 Lucas (1992). While the need to provide incentives is fundamental here, the particular source of
 the incentive problem is not. Technically, all that is needed is a binding incentive constraint. With
 this, both unequal opportunity and social mobility are necessary implications of an efficient, or
 optimal, societal arrangement.

 APPENDIX

 Proof of Lemma 1. Suppose allocation solves the primal problem but not the dual problem. Allocation 4 is in
 the constraint set of the dual problem with cost S(C) < 0. Thus, if it does not solve the dual problem, there exists another

 allocation C with a cost, S(C) < 0, satisfying (2.1), (2.2), and  < liminfT- I T =0 fV wd1' ,(w).
 For all t, define At such that Lw q P(qt jat (wt))[u- (u(ct(wt, qt))+ At) - qt ]dTt'(w) = 0. In words, At is the

 constant utility addition (to allocation C) which causes the resource constraint in period t to hold with equality. Next, let

 W t+ 1 ( tot , qt ) = t( t + 1 t t -o it sa , s t + t+ 1 p s- s , s=t s=t+l

 at(wt) = at - - s As

 and c, (tot, qt) be such that

 u (?t (Wt,qt))_=u (c, t- -f i-- fis AS qt + At.

 Finally, for all (w, w) let To([w, -i]) = T0([w - (1 - P) s=0 s As, - (1 - - p) J o Ps As]). This defines an alter-
 native feasible, incentive-compatible allocation ( where the resource constraint holds with equality at each date. (Note

 that for some t, St (C) may be positive (the resource constraint (2.3) is violated), in which case this procedure reduces ag-
 gregate consumption, and in others, St (l) is negative (the resource constraint (2.3) is slack), in which case this procedure
 increases aggregate consumption.)

 This construction ensures limiting mean utility increases (since liminfTr  T+1 o=0 At > 0 from S(C) < 0).
 Further, conditions (2.1), (2.2), and (2.3) are satisfied by C. Thus j is in the constraint set of the primal problem, but has
 a higher primal objective function value than C, contradicting the optimality of (. II

 For Lemma 2, it is useful to let allocations be defined as probabilistic. Let a probabilistic allocation be defined as

 a collection C = (TO, {tct(.Iwt)}O=0), where rt(.I tot) is a probability measure mapping subsets of A x Q x R+ x V to
 [0, 1]. In words, 7rt ( tot) gives the joint probability of a household promised tot dynastic utils being recommended action
 at, realizing output qt, receiving consumption level ct, and future utility promise ,t+1 as in Section 5. As before, the

 measure TO and the functions wrt define the sequence of measures over continuation utilities {tit' 0 with means {ft }i 0

 Proof of Lemma 2. Suppose there exists ( such that S() = S(4) - E for e > 0. Let Eq = qP(q ao), where a0

 is the lowest effort level, and let i0 be the mean of 0o. Next, define cO (w) such that w = (1 - f)(u(c (w)) - v (a0)) + flO

 and Dt (C) - f,~ c0(w)d~ t (w) - Eq - St (_). In words, the function c0(w) is the consumption necessary to keep utility
 promise to, given that from next period on the household will receive utility v0 and effort is set to ao. The function Dt (C)
 is the addition to the cost in period t of replacing the period t allocation with an allocation that delivers Yt with efforts set

 to a0 and promises set to vo0. Let D - liminfto D t(-) and suppose D = o,. This implies either St (C) -> -oo, which

 contradicts S(C) = 0, or fo c0(w)d'Pt(w) -* o0. The latter implies either vt -* -oo or the variance of 't -- oo, neither of which is compatible with optimality. Thus D < 00.
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 Choose T such that 1 t=0 St (() < S(() + L, and T1 DT() < . Let CC equal C for dates t = 0 to T - 1, and
 let (C for date T deliver 'T with effort set to ao, consumption levels set to co(w) and promised utility be a lottery with
 measure TO independent of wT and qT. For all t > T, repeat this T + 1 length cycle. By construction, S(c) < S(O) + .

 Next, define the stationary allocation - = (, f-) as follows. For all W E B(V), F(W) = T+1 t=0 (W) and for

 all W e B(V), and Z e B(A x Q x IR+ x V), fw F(ZI w)dW(w)= (IT T (w))-1' T0 f w(ZIw)dPF(w). (If ,-oT t =oI- = I T (z d c (t ). zT=0 C (w) = 0, then 7- can be defined as anything.) This construction ensures f wdtY(w) = 1~t=o0 f t (),

 and thus the stationary allocation delivers the same average utility as the cycle (. Second, this construction ensures

 fw fa,q,c,w' (c - q)d-f(a, q, c, w')d'(w) = 1 ZJt=oT f fa,q,c,w, (c - q)r C (a, q, c, w')d'tC (tw), and thus the sta- tionary allocation ( has the same cost as the cycle (C. Since S(E) < S(4) + E < S((), the allocation ( could not have
 solved the stationary dual problem. II

 Proof of Lemma 3. Consider a solution to the stationary primal problem * such that

 SP(q la*o(w))[c*(w, q) -q]d*(w) < 0.
 V q

 For a given c > 0, construct an alternative allocation ( as follows. First, for all intervals (-oo, w], let Y((-oo, w +e]) =
 T * ((-oo, wo]). This ensures that the objective function increases by e. Next, let a(w + c) = a* (w). This ensures that
 aggregate production is unchanged. Finally, let w'(w + e, q) = w'*(w, q) + C, c(w + c, q) = c*(w,q) if q 0 , and

 c(wt + c, 4) be such that
 u (c(wO +C , 4)) = u(c* (w,-4)) + P(41a* (w))

 In words, a household promised tw utils under allocation (* is delivered w + e utils under allocation ( by increasing
 all continuation utility promises by e and increasing the utility payment if output 4 occurs by c/P(qla*(wi)). This
 construction ensures that stationarity (2.4) and promise keeping (2.5) are maintained.

 This leaves the incentive-compatibility constraints (2.6) and the resource-feasibility condition (2.7) to be met. For a

 given utility point w + e and i < a, the incentive constraint for allocation ( is that

 W + C P(ql a)((1 - P) [u(c(w + c, q)) - v (a)] +flw'(o + c, q)). (A.1) q

 From the fact that 4* is incentive compatible, we know that

 wi = P(qlii)((1 - f) [u(c* (w, q)) - v((a)] + pw'* (w, q)) + A, (A.2)
 q

 where A > 0 is the amount by which the incentive constraint is slack. Subtracting, side by side, expression (A.2) from
 expression (A. 1) and using the definition of 4 delivers that

 P(q1a)
 c > (1 -8) +fle- A. (A.3) P((la*(w))

 This holds because P(-qJ4a)/P(-qa*(w)) < 1 and A > 0. Thus, ( is incentive compatible.

 Finally, the fact that f V q P(q~a*(w))[c*(w, q) - q]dW*(w) < 0 implies that there exists an C > 0 for which
 equation (2.7) is satisfied, contradicting the optimality of '*.

 Next, consider a solution to the stationary dual problem 4* such that fV wdT* (w) = 1-+ E for e > 0. Construct
 an alternative allocation exactly as in the previous paragraphs, but instead of adding consumption when output 4 occurs,
 subtract consumption when output q occurs. This lowers both cost (the objective function of the stationary dual problem)

 and mean utility (which is slack). Since e > 0, this contradicts the optimality of (*. II

 Proof of Lemma 4. If 4* solves either the stationary primal or stationary dual problem, it satisfies (2.4)-(2.6)
 immediately. Suppose 4* solves the stationary primal problem and another stationary allocation 4 satisfying (2.4)-(2.6)
 and (3.9) has a negative value of the stationary dual objective function (3.8). Such a plan is in the constraint set of the
 stationary primal problem since it satisfies (2.4)-(2.6) immediately and satisfies (2.7) with slack. Stationary allocation 4
 has a weakly higher stationary primal objective function value (since it satisfies (3.9)) and the resource constraint (2.7)

 does not bind, contradicting Lemma 3. Thus, if 4* solves the stationary primal problem with objective value v, it solves
 the stationary primal problem with C(i) = 0.

 Next, suppose a stationary allocation 4* solves the stationary dual problem with C(i) = 0. Suppose another sta-

 tionary allocation ' satisfying (2.4)-(2.7) has fV wd'Y (w) > 1. Such a plan is in the constraint set of the stationary dual
 problem since it satisfies (2.4)-(2.6) immediately and satisfies (3.9) with slack. Stationary allocation 4 has a weakly
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 higher stationary dual objective function value (since it satisfies (2.7)) and (3.9) does not bind, contradicting Lemma

 3. Thus, if "* solves the stationary dual problem with C(-) = 0, it solves the stationary primal problem with objective
 value u. II

 Proof of Lemma 5. To begin, note V = (-oo, 0). Next, let 4_l = (W-1, a-l(w), c-((w, q), w' (w, q)) solve
 (4.11) subject to (2.4)-(2.6) and (3.9) for - = -1. Next, fix A > 0 and define ?A by scaling 4-1 as follows: first, for
 all {w,i-} e R2, let TA ([w,~ ]) = Y_ I([w/A, i/A]). Next, let aA(w) = a-_(w/A), cA(w, q) = c_1(w/A,q) -
 log(A)/y, and w' (w, q) = w'1 (o/A, q)A. By construction, 4A satisfies (2.4). Next, consider the incentive constraint
 for a given w < 0 and a < aA (w), that

 SP(qlaA (w)) {(1 - fl) [-exp(-y [cA (w, q) - v(aA (w))])] + w (w,q)} q

 > P(qJi) {(1 - f) [-exp(-y [cA (w,q) -v(a)]]) ]+fw' (w,q)}. q

 With the definition of 4A substituting into this, it simplifies to

 YP(qla-i(to)) {(1 -f) [-exp(-y [c-ll,(w/A,q) -v(a-1(w/A))])]+ fw'_ i(w/A,q) q

 > Y P(ql i)( -fP)[-exp(-y [c-l(/olA,q)- v(ai^))] +ftl'_l(w/A,q), q

 which holds since -1 is incentive compatible, or satisfies (2.6). Next, confirm the promise-keeping constraint (2.5) by
 noting that

 Z P(qlaA (w)) {(1 -f) [-exp(-y [cA(w,q) -vo(aA(w))])] +3wX '(w, q)}
 q

 = A P(qla_-(w)) (1-f)[-exp(-y [Cl(w/A,q)-v(a-1(W))])]++ flW'l(/A,q)} q

 = Aw/A = tow.

 Further, CA satisfies (3.9) for F = - A since

 fowdTA(0)= Jo Ad-I(w) = AJ wdT1- (w) = -A.
 V V V

 Thus, A is in the constraint set of the dual problem for F = - A. The resources consumed by ?A can be expressed as

 S P(qaA (w))[cA (w, q)- q]dWA (w)
 V q

 = J P(qaA (toA))[CA (towA, q)-q]d _1(1)
 V q

 = P(qla-1(w))[c1 (w, q) -log(A)/y - q]dT-1()
 V q

 = -log(-v)/?7 +J P(ql a- (w))[c-l(w, q) - q]d' l(w)
 v q

 = -log(-o)/y +C(1).

 Next, suppose that there exists a plan "* satisfying (2.4)-(2.6) and (3.9) for F = -A, which has resource cost

 C* < -log(--)/y + C(- 1). Here, let 6 = -1/ A, and define rj by scaling 4* by 6 as above. The same arguments as
 above establish that r4 satisfies stationarity, incentive compatibility (2.6), and promise keeping (2.5). Further,

 Jwda(w)= Jw/ad'P*(w)= (1/) Jwdl *(w)= -1,
 V V V
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 and thus ?4 satisfies (3.9) for 5 = -1. The resource cost of ?6 is, then,

 SP(qIa5(w))[c6(w, q) - q]d ( wu)
 V q

 = P (qla6(wt6)) [cq(w6, q) - qIdT (w) V q

 / P(q a*(w))[c*(wo, q) -log(6)/7 -q]dTP*(w)
 V q

 = -log(-1/)/y +J P(qla*(w)))[c*(w,q) -q]dW*(w)
 V q

 = log(-i5)/y + C* < log(-J)/y - log(-J)/y + C(-1) = C(-1),

 which contradicts optimality of 4_1. II

 Proof of Lemma 6. The proof of Lemma 6 proceeds in the same way as that of Lemma 5. For y > 0, i1 =

 I', kl (to), al (to),cl (w, q), w (w, q)} is defined as the optimal allocation delivering V = 1. Then, for A > 0, a new

 allocation ?A is defined such that for all [w_, w] e R2- , YA ([w, 3]) R= Wl([to/A, w/A]), kA (w) = kl (/ A)A1/y, aA(w) = al(w/A), cA(w,q) = c1(w/A,q)A1/ , and w'A (w, q) = w' (w/ A, q) A. I can show that CA is satisfied for
 (2.4)-(2.6) and (3.9) for 5 = A. Further, if any other plan had a lower value for the dual objective function (4.12), it
 could be used to generate a lower cost plan for delivering v = 1. Then cA (w, q) = cl (w/A, q)A1/y, and 5 = A delivers

 C(-) -= 51/y C(1).

 For y < 0, 4-1 = -1 k-1 (),-1 ( ),a (w), c (w, q), w' I (w, q)} is defined as the optimal allocation delivering - =
 -1. Then, for A > 0, a new allocation ?A is defined such that for all [w!, w] e -R2, PTA ([o, w]) = - ([w/A, W/A]),

 kA(w)= k-1(w/A)A1/, aA(w) =a-l(w/A), cA(w,q) =c-1(w/A,q)A1/y, and w~U(w,q)= w' 1(w/A,q)A, and
 the argument proceeds unaltered. Then cA (w, q) = c1 (w/ A, q)A1/y , and T5 = -A delivers C(D) = (-i)1/y C(-1).

 Finally, for y = 0, or U(c,a, k) = log(c - kv(a)), the reference allocation 40 = {-Io,ko(w),ao((w), co(to, q),
 w(w, q)} is defined as the optimal allocation delivering 1 = 0. Then, for A c R, a new allocation ?A is defined such

 that for all [wE,=-] e R2, TA'A([W ]) = 0o([w + A, w + A]), kA(w) = ko(w - A)exp(A), aA(w) = ao(w - A),
 cA (w, q) = co(w - A,q)exp(A), and w' (w, q) = w' (w - A,q) + A, and the argument proceeds unaltered. Then

 CA (w, q) = co(w - A, q) exp(A), and = A delivers C(i5) = exp(-v)C(0). I
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