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 A STOCHASTIC MODEL OF SOCIAL MOBILITY *

 ROBERT MCGINNIS

 Cornell University

 Stochastic probability processes are considered as models of social mobility. Such processes
 are extremely similar to, and hence useful in the study of human mobility. However, the
 best known of these models, the stationery Markov chain, provides a poor representation of
 mobility, largely because of its one-step dependency axiom. An elaboration of the Markov
 chain is suggested, using an additional axiom to the effect that one's probability of remain-
 Mig in a social or geographic location increases monotonically with increases in duration of
 prior residence in it. This axiom generates a dynamic stochastic model of mobility. Formal
 properties of the model are displayed. Relevant computer simulation experiments and empiri-
 cal research are described.

 SPACE, time, and motion are inextricably
 related concepts.' In the description
 of one of them, the other two must

 be invoked, at least implicitly. Since mo-
 bility, in its most skeletal form, is just mo-

 tion through a property space, its analysis
 clearly must include a temporal component.
 To study mobility is to study paths of points.
 Each point represents an element's location

 * A number of people have been involved in the
 development of the model that is discussed here,
 especially John Pilger, Syracuse University, George
 Masnick, Brown University, Alan Hershberg, Jet
 Propulsion Laboratory, Neil Sloane, Cornell Uni-
 versity, and George Myers, World Health Organiza-

 tion. This line of investigation was suggested
 originally by Leo F. Schnore. The research reported
 here was supported in part by the National Science
 Foundation Grant Number GS 1429.

 X For a detailed discussion, see Whitrow, 1961,
 especially Chapters 5 and 6; and Margenau, 1950,
 especially Chapter 7.
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 A MODEL OF SOCIAL MOBILITY 713

 in a property space at an instant in time.
 Each path represents its motion through
 time in this space.

 In this sense of the term, mobility analysis
 is simply the study, both empirically and in
 the abstract, of families of temporal func-
 tions. Such functions connect measures of
 location in property space.2 If a temporal
 function is to represent social mobility, the
 conditioning information is critically im-
 portant and must itself be time bound. This
 is because social mobility is an historical
 process in a deeper sense than that of its
 measurement in time. In social mobility, it
 can safely be assumed that where one is
 today depends both on where he was yester-
 day, and on certain characteristics of the
 path that brought him there. Thus, the
 conditioning information of a mobility func-
 tion should describe some relevant part of
 earlier history of the element, of the social
 system itself, or of both.

 At a suitably abstract level, then, theories
 about social mobility are similar to theories
 about temporal functions, virtually to the
 point of their being interchangeable. De-
 spite this fact, the mobility literature has
 been rather less than saturated with ex-
 plicit functions of time. Only in recent years
 have sociologists given serious consideration
 to such functions in their studies of mobility
 and change.

 Some portents of change in the sociological
 analysis of mobility occurred roughly fifteen
 years ago. In 1954, T. W. Anderson pro-
 posed a class of temporal functions for the
 analysis of changing political attitudes.
 Anderson used the stochastic process func-
 tions known as Markov chains to represent
 changes in political preferences among a
 panel of respondents.3 A year later, Blumen,
 Kogan and McCarthy (1955) published a
 major study of industrial mobility in the

 American labor force using the same form
 of temporal function.

 More recently, this family of temporal
 functions has been used to characterize such
 diverse phenomena as changes in conformity
 behavior in an Asch experiment, (Cohen,
 1963) patterns of human migration, (Ter
 Heide, 1963; De Cani, 1961) reproductive
 behavior, (Perrin and Sheps, 1964) and
 intergenerational occupational mobility
 (Hodge, 1966).

 All of these studies may be taken as evi-
 dence of a healthy development in socio-
 logical theory. One discouraging note must
 be sounded, however. Few applications of
 these temporal functions worked especially
 well when tested against data, and some
 of them were howling failures. In each case,
 Markov chain theory was applied, but in
 no case did it prove to be a particularly
 good representation of social phenomena.
 The reason for this failure evidently rests
 in the fact that the Markov chain lacks
 the necessary detail with which to represent
 accurately the social phenomena under
 study. The "Cornell Mobility Model," de-
 scribed below, employs a more elaborate
 form of Markov chain that may reduce this
 defect somewhat. In order to characterize
 this model and to contrast it with the
 Markov chain, it will be useful to review
 briefly the latter's structure of axioms and
 to evaluate them as they pertain to social
 mobility.

 Markov Chains and Social Mobility. A
 Markov process is a stochastic, or time-
 dependent probability function that is char-
 acterized by a set of states (which can be
 considered finite for purposes of this paper),
 S={s1, S2 . . . . , sm}; a probability dis-
 tribution over the states at each time t,

 B(t) =[b(t) . . , bm(t)]; and a
 square m x m matrix P(t)=[ptj(t)]. The
 number bi(t) is real, non-negative and sub-
 ject to Ubi(t)=1, all t. Hence, it is inter-

 pretable as the probability that an element,
 x, is in a state si at time t, noted bi(t) =Pr
 {x(t)E sl}. The typical element of P(t) also
 is real and non-negative, but subject to E

 Pij(t)=1. Thus, Pij(t) is interpretable as
 the conditional probability that an element
 is in state j at time t given that it was in
 state i at t-1, noted Pij(t)-Pr {x(t)EsjI

 2A temporal function can be represented by
 the form f(x,t,,y) a, where x is an element, t is

 a real-valued measure of time, oy is conditioning
 information, and a is a vector of location in
 property space.

 3The later sections of this paper require some
 familiarity with Markov Theory. An adequate
 review is contained in Kemeny and Snell, 1960.
 A more thorough treatment is provided in Feller,
 19S7, and Parzen, 1962. From this point, we shall
 consider only discrete measures of time, and de-
 numerable state sets.
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 x(t-1)es1}. Such a structure is called a
 transition or a stochastic matrix.

 The Markov process is characterized, and
 distinguished from other stochastic processes,
 by the following axiom:

 A stochastic process is a Markov process

 Pr{X(t)=sJfX(t 1)=si}=
 Pr{X(t)=sjIX(t-1)) si and -y(t-k)}
 where k=2, 3, ...., t and -y(t-k) (1)
 is any additional conditioning infor-
 mation about the prior history of X.

 That is, a Markov process is any stochastic
 process such that the outcome at time t
 depends on the outcome at time t- 1 and
 on nothing that occurred at any earlier point
 in time. It is for this reason that the Markov
 process sometimes is called a one-step de-
 pendency process.

 As any useful simplifying assumption
 must, condition (1) has a payoff. If we
 define

 (n) (n)

 P(t)- [pij(t) ], where
 (n)

 pij(t)=Pr{x(t)Esjfx(t-n)esi}, (2)

 (n)

 then P(t) can be interpreted as the matrix
 of n-step transition probabilities whose

 (n)

 typical element pij (t), is the probability
 of going from st at time t-n to sj at time t.
 Then it follows from (1) and the theorem
 on joint occurrences of statistically indepen-
 dent events (see Feller, 1957:115) that, for
 any Markov process,

 (n) t

 P(t)= H P(k), where n<t. (3)
 k=t-n+l

 Since the distribution vector of probabilities
 in any stochastic process can be expressed
 as

 B(t)=B(t-1) P (t), (4)

 the product of the vector at t- 1 and the
 transition matrix at t, it follows that

 (n)

 B(t)=B(t-n) P(t). (5)

 In particular, the distribution vector at t
 is just the product of the initial vector and
 the sequence of transition matrices:

 B(t) =B(O)HIP(k).
 k=1

 A Markov chain is a further simplification
 of a Markov process given by the following
 axiom:

 A Markov chain is any Markov pro-
 cess with transition matrix, P(t),
 such that, for some stochastic matrix
 P.

 P(t)= P, all t, (6)

 so that P is independent of and constant in
 time. It follows immediately that, for any
 Markov chain

 (n)

 P(t) =pn, the nth power of P. (7)
 A rich variety of formal consequences

 flows from (6). In fact, the properties of
 Markov chains are so many and complex
 that the bulk of published research in
 Markov processes is restricted to the sub-
 class of chains. This is unfortunate for soci-
 ologists, so much of whose data are in-
 trinsically stochastic, since the Markov
 chain conditions appear not to correspond
 well to many temporal problems in sociology.
 To understand why this is the case, we must
 consider what the Markov axioms require
 and to what extent these requirements are
 satisfied by the process of social mobility.

 First, it must be clear that a Markov
 process is an independence model, and is
 similar in this respect to the binomial or
 any other so-called independent trials model.
 The one difference is that in independent
 trials models, the events themselves must be
 statistically independent, where the Markov
 requirement is that transitions among events
 must be indepedent.4 The Markov chain
 axiom (6) makes it yet more similar to the
 binomial or multinomial model in requiring
 a constant probability, not of an event, but
 of transitions among events. Condition (1)
 requires that the probability of a move
 between two states be independent of every
 historical fact other than that of the loca-
 tion at time t- 1. This is not so extreme
 an assumption as it is sometimes taken to

 4 An independent trials model is the degenerate
 case of a Markov chain in which pij=pkj, k=1, 2,
 . ., m, that is, in which each row of p is equal
 to every other row.
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 be. It does not require that the effects of
 history "die" after a single interval. The
 probabilities of sequences of moves, even

 with common origins and termini such as

 si*sk*S>sj as against SiSr--jS might be
 quite different. What is required is just that
 any two elements occupying a common
 state at time t-1 must have identical
 probabilities of moving to a specified state
 at time t, regardless of their possibly diver-
 gent prior histories.

 Within the range of sociological phe-
 nomena, this is a patently unrealistic con-

 dition. Consider the mobility among a set

 of states, S={si}, of a cohort of people.
 The effects of history frequently are cumula-
 tive in such a way as to give quite different
 mobility probabilities to individuals, despite
 the fact that they happen to share a com-
 mon state at a particular time. It is prob-

 ably not reasonable, for example, to assign
 equal probabilities of recidivism to two per-
 sons classed as being on probation at a
 particular time. This is clear in the case
 in which one is a first offender while the

 other is a ten-time loser. Nor is it neces-
 sarily reasonable to assign equal proba-
 bilities of shifting an ideological stance to
 two people, one of whom has held the posi-
 tion steadfastly for many years and the other
 of whom has just adopted it.

 Condition (6) is equally unrealistic for
 sociological purposes, but in a different way.
 In contrast to (1), which is an assumption
 about the entities that make up a system,
 condition (6) is an assumption about the
 system itself, requiring essentially that it
 be closed and thus undisturbed by external

 forces in its transitional structure. Although
 this condition is both major and unrealistic,
 it is somehow easier to cope with in socio-

 logical analysis than is that of (1). Ander-

 son, for example, showed how the station-
 arity condition of (6) was violated by a
 panel of respondents in their patterns of

 switching preferences among possible candi-
 dates for the United States' Presidency in
 the months prior to an election. (Anderson,

 1954.) The transition matrices that charac-

 terized the panel changed markedly as the
 result of an external force, the occurrence

 of the two parties' nominating conventions.
 Stationarity, in fact, can take the status of

 an hypothesis rather than that of an untested
 assumption.5

 The problem reduces to this: time-de-
 pendent probability theory seems to be an
 altogether natural framework for the analy-
 sis of social mobility. But the most
 thoroughly studied of these, Markov theory,
 makes assumptions that are probably vio-
 lated in most, if not all, applications to
 human mobility. In particular, the assump-
 tion that history acts itself out in single
 independent steps is not the way in which
 processes of social change seem to operate.

 The failure of the Markov model shows
 up in a peculiar and characteristic way that
 might be called "lumping on the diagonals."
 That is, observed transition matrices often
 display markedly higher diagonal values,
 representing non-movers, than are predicted
 from the model. This reflects the obvious
 fact that a propensity to be a stayer hinges
 on more than the simple condition of current
 location, contrary to the first Markov axiom.

 The beginnings of one possible solution
 to this problem are sketched out here. These
 consist of building a more complicated role
 for history in the mobility process, incor-
 porating this reconstruction in Markov
 theory, and of studying some consequences
 of these alterations. The crux of this ap-
 proach is that the fate of the system (or
 of an element in it) at time t hinges jointly
 on its location at t- 1 and on the duration
 of its prior residence there. Clearly this is
 but one of many possible ways of building
 history more closely into stochastic models
 of social mobility. However, results thus
 far suggest that this approach may merit
 further study.

 THE CORNELL MOBILITY MODEL6

 Earlier Markov chain applications did
 not give especially good representations of
 social mobility. But it does not necessarily

 5 For test procedures, see Anderson and Good-
 man, 1957; Suppes and Atkinson, 1960.

 6 This label is due to Dr. Leroy Stone, Dominion
 Bureau of Statistics, who suggested it in a thus
 far unpublished paper, "Some Methods for Investi-
 gating Limit Properties of the Cornell Stochastic
 Process Model." In this paper, Dr. Stone suggested
 several interesting approaches to the investigation
 of limiting distributions of the model described
 here. This paper contains the groundwork for proof
 of Theorems (14.5) and (14.6).
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 follow that Markov theory ought to be
 abandoned in this context. In fact, its basic
 structure, involving the probabilistic motion
 of elements through time from state to state,
 strongly resembles the basic structure of
 social mobility. For this reason, and because
 it is so well-studied, there may be greater
 merit in developing a more elaborate Markov
 theory so as to make its behavior similar to
 the mobility behavior of humans than in
 the alternative of discarding it.

 The procedure that led to the Cornell
 Mobility Model was to impose an addi-
 tional axiom giving a more complicated role
 to time than in any earlier model. The
 axiom was rooted in substantive sociological
 considerations rather than in those of mathe-
 matics. It was begun with the observation
 that people are not necessarily homogeneous
 in their tendencies to be mobile even though
 they may be in a common location at a
 particular time. A number of sources made
 it seem equally plausible that movement out
 of a status position (or any other social
 location) is constrained chiefly by one's
 ties to that position.7 Moreover, the strength
 of these ties normally should be expected
 to grow with the passage of time.

 These observations suggested the follow-
 ing simple axiom about motion through time
 in social space:

 Axiom of Cumulative Inertia. The
 probability of remaining in any state
 of nature increases as a strict mono- (8)
 tone function of duration of prior
 residence in that state.

 Thus, the axiom implies that not all elements
 in state si at time t are governed by a single
 law of mobility. In particular, those who
 have been there longer have a greater
 probability of remaining than do relative
 newcomers.

 This axiom yields a broad range of test-
 able propositions. For example, the longer
 one's criminal career, the more likely one
 is to remain a criminal; the longer a person
 resides in a community, the more likely he
 is to remain there; or the more extensive

 7 We need not be concerned about the nature of
 the ties, whether of sentiment, of coercion, or of
 other sources. However, such considerations cer-
 tainly could be incorporated formally into the Cor-
 nell Mobility Model.

 a history of emotional disturbance, the
 more likely is an observation of disturbance.
 These hypotheses about elements of a sys-
 tem seem plausible enough, but only if the
 system is closed.8

 The Cornell Mobility Model is a closed
 system that incorporates the Axiom of
 Cumulative Inertia and which generates a
 "two-dimensional" Markov chain. The basic
 definitions and formal axioms of the model
 are given below. These are followed by a
 description of certain properties of the model,
 preliminary results of simulation experi-
 ments, and suggestions for further develop-
 ment. First, however, it would be useful
 to consider intuitively how Markov theory
 must be elaborated so as to include the
 Axiom of Cumulative Inertia.

 Stochastic processes incorporate time as
 history of the system. The cumulative inertia
 axiom involves time as the history of ele-
 ments in a system. Clearly, these two aspects
 of time are closely related, but they are not
 the same thing. System time corresponds to
 the usual aging process, but individual state.
 occupation time differs in that a form of
 rebirth occurs whenever an element moves
 from one state to another. Thus, two time
 scales, one for the system and one for ele-
 ments in the system must be involved. These
 scales will be indexed by the letters t and d
 respectively.

 In traditional stochastic models, a popula-
 tion is distributed at a point in time in a

 vector of states, S [si]. Mobility is ac-
 complished through open channels among
 some or all of the states according to a
 probability schedule given by the transition
 matrix, P(t)=[pij(t)]. In the Cornell
 Mobility Model, a population is distributed
 at a point in time in a two-dimensional
 matrix of states. Mobility then is governed
 by the axioms of the model, described below.

 Intuitively, the Cornell Model partitions

 8 As with the stationary Markov chain, an im-
 portant use of such a closed system model is as a
 benchmark for testing hypotheses about the con-
 sequences of intervention in an open social system.
 The axiom is probably a bad one insofar as mobility
 is concerned in a hierarchy with an ordinary pro-
 motional system. In such a case, the relation be-
 tween tendency to remain in a state and prior
 residence in it probably is a parabolic function,
 with a maximum point whose first derivative is
 zero and whose second derivative is negative.
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 A MODEL OF SOCIAL MOBILITY 717

 a population into four cells, as in Table 1.
 Note that any occupant of state lsj(t?l)
 cannot have been in state sj at time t.
 Similarly, an occupant in state dsl(t?l),
 for d> 1, must have been in that same state
 at time t and must, in addition, have been
 in that state for d-1 prior consecutive time
 intervals. The Model is more fully repre-
 sented in Figure 1.

 TABLE 1. MOBILITY PATTERNS BY RESIDENTIAL
 STATUS IN TEE CORNELL MOBILITY MODEL

 Mobility Status

 Residential in the Interval (t, t+1)
 status at
 time t Stayer Mover

 Continuing
 resident dS1(t)-)dl15i(t+1) dSi(t)-)'SJ(t+1)

 Newcomer Lsi (t) -+,s (t+1) is (t)-* 1s (t+1)

 where d>1
 if j

 Basis and Axioms of the Cornell Model.
 Let a population of elements be partitioned
 at each indexed point in time into a (mutu-
 ally exclusive and exhaustive) finite set of

 states, S={si, i=1,2,...,m}. Let each state
 of S be subpartitioned by the index set
 D-{1,2,.2. .,d,.. . }, with the resultant
 doubly-partitioned set

 )S-=(s, 1S2 . *. ., Ism, 2SI 2%k, (9)

 The sentence "x(t)OdCi" is interpreted to
 mean "the element x is in the state s5 at
 time t and has been in that state for d con-
 secutive prior time periods." Since DS is a
 partition, it follows that, for each x and t,
 there exists one and only one ordered pair

 <d, i>, such that the sentence "x(t)Edsi"
 is true.

 For each t, let a countably infinite se-
 quence of transition matrices, dP (t), be
 given by

 RP ( t),=[dPij ( I)]
 where dpij Pr{x(t)Eksjjx(t-1); EdSi}; (10)

 dk= 1,2,3, ...
 ij=1, 2, . . ., m.

 The structure dP(t) is the duration-specific

 Newcomer mover

 S P - Continuing mover
 I / / -*- Newcomer stoyer

 Continuing stayer

 d ~ ~ ~ ~~~~+

 D d

 I T+2

 FIGuRE 1.REPRESENTATION OF LOCATION AND MOBILITY PATTERNS IN THE CORNELL MOBILITY MODEL
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 transition matrix governing the behavior at
 time t of elements which at time t-1 had
 been in their respective states for d con-
 secutive prior time units. Clearly, this is
 not the same thing as P(t), the gross Mark-
 ovian transition matrix. It should be the
 case, however, that the gross matrix is re-
 coverable from the duration-specific matrices.

 Finally, let dP(t) be partitioned by

 dS (t) [dSij (t)],
 where

 d51it ...dPli(t) if i~ 11 to otherwise
 and

 dM(t) dP(t) -dS(t).

 dS (t) is just the diagonalization of dP (t),
 commonly called the stayer matrix. dM (t)
 is the matrix that governs the behavior of
 movers.

 With this notational basis, the Model is
 governed by the following:

 Axioms for the Cornell Mobility Model.

 1. Pr{x(t) EkSijX(t-1)EdSi}=
 Pr{x(t) EksJIx(t-1) Edsi and I};
 where t is any additional in-
 formation about x prior to
 time t.

 2. dP (t) =dP, all t.

 3. Prfx(t)CkSijX(t-1)Cdsi}=O (12)
 *fSi=j and k7&d+1
 1 ji;j and k#,1

 4. dS<d+1S; lim dS=I, the identity
 matrix. d

 5. There exists a stochastic matrix,

 R=[rnj], subject to ri=O, all
 i, such that dM=(I-dS) R.

 Axiom (12.1) is the first Markov axiom
 applied to duration-specific rather than to
 gross transition matrices, while (12.2) is
 the second Markov axiom similarly applied.
 As a result of (12.2) time subscripts may
 be dropped from dP, dS, and dM. Note that
 this Axiom does not imply that the gross
 matrix, P(t), necessarily is stationary. The
 third Axiom regulates individual time rela-
 tive to that of the system and, basically,
 sets their clocks at an identical scale. By
 this Axiom, a stayer gains one unit of dura-
 tion time for each increment in t and a
 mover regains duration status d= 1.

 Axiom (12.4) simply formalizes (8), the
 Cumulative Inertia Axiom. In addition, it

 specifies that, in the "long run," any suffi-
 ciently dogged stayer finally will be stopped
 in his tracks. Evocations of the graveyard
 aside, this may not be an empirically realis-
 tic treatment of the later behavior of the
 non-mobile. It is a problem that is being
 investigated separately. (Henry et al., 1968)

 The final axiom of this system is, in a
 sense, a dummy postulate. It asserts that

 a mover from s, will go to any given state,
 sj, with probability that is indepedent, both
 of his prior residential history, and of time,
 the probability depending only on his loca-
 tion and on the particular destination. This
 is a dummy axiom in the sense that it ignores
 the "pull" part of various "push-pull" hy-
 potheses, especially the notions of attractive
 mass and intervening opportunities. Again,
 differential attraction phenomena are being
 investigated separately. (McGinnis and
 White, (1967)

 Some Properties of the Model. Mathe-
 matically, this turns out to be a rather com-
 plicated Model, due in large part to the fact
 that a newcomer may have been a resident
 of any other state with any prior duration
 of residence there. Nonetheless, certain prop-
 erties of the Model have been located analy-
 tically. To describe them, some additional
 definitions are necessary. Let

 1. A(t) [aid(t)],I
 where aid(t) Pr{x(t)Edsi};

 2. Ad(t) be the dth column vector

 of A(t);

 3. B(t) _(A(t)C)T, bi(t)-
 Pr{x(t)Esij}, where C is a con- (13)
 formable column vector of ones,
 and where T indicates trans-
 position.

 4. C(t)_ [Cid(t) ], Cid(t)- ai (t) ; aid(t)

 5. Cd(t) be a diagonalization of
 the dth column of C (t).

 Thus A(t) is a rectangular matrix that con-
 tains the joint probability of location in a
 state at time t and of prior residence in it;
 B (t) is a I x m vector that contains the
 marginal probability of being in each state
 at time t; C(t) is the same size as A(t),
 but contains the conditional probability of
 having d residence units given that an ele-
 ment is in state si. The square m x m matrix
 Cd(t) has entries consisting of the dth

This content downloaded from 193.255.139.50 on Sun, 22 Dec 2019 13:44:23 UTC
All use subject to https://about.jstor.org/terms



 A MODEL OF SOCIAL MOBILITY 719

 column of C (t) on the diagonal and zeroes
 in all off-diagonal cells.

 With this additional notation, it can be
 shown that 9

 Theorem. With the preceding defini-
 tions and noting the transpose of
 dM by dMT,

 f MT Ad (t-1) if d=1
 1. Ad(t)=-d

 Id-1S Ad-1 (t-1) if d>1.
 2. (B (t) =:dpTAd (t-1)

 d

 3. P(t)=Y.Cd(t-l0dP` (14)
 d

 4. P(t) is non-stationary in t.
 5. There exists a stochastic matrix,

 P, such that lim P(t)=P.
 t

 6. There exists a distribution vec-
 tor, B, such that lim B(t)=B.

 t

 Parts (14.1) through (14.3) display the
 basic algebraic structure of the Cornell
 Model. It can be seen from (14.2) and
 (14.3) that the stationary Markov chain is
 the degenerate case of the Cornell Model in
 which the dP matrices are constant in d

 (recognizing that X Ad(t-W)=B(t-1) and
 d

 that > Cd =I, the identity matrix). The non-
 d

 stationarity of the gross transition matrix
 (14.4) is an immediate consequence of

 (14.3) and the fact that Cd(t) varies in
 time. While (14.5) and (14.6) show that
 the Cornell Model converges to an equilib-
 rium state, they do not imply that its be-
 havior in the limit is like that of a Markov
 chain. In particular P, the limit of P(t),
 does not have the property of uniform
 column vectors as does the limit of Pn in a
 stationary chain.

 Computer Simulation Experiments. In
 order to obtain further insights into the be-
 havior of the Cornell Model, a program of
 40 simulation experiments was conducted.'0
 Monte Carlo processes were not used. In-
 stead, each experiment consisted of iterating
 the system from an initial condition to con-
 vergence.1' Necessary inputs for the experi-

 9 Proofs are omitted throughout this paper, but
 are available on request from the author.

 10 An I.B.M. 360/65 was used. Maximum time
 per experiment was less than 60 seconds; average
 time was approximately 5 seconds.

 11 Convergence time was defined as that value
 of t such that Ipij (t)-pIj (t-) 1)<.0005.

 ments were m, the number of states; A (0),
 the initial duration-specific distribution
 matrix; 1S, the newcomer stayer matrix; a

 function to generate dS from 1S subject to
 (12.4); R, the stochastic matrix that pro-
 duces dM from dS by Axiom (12.5).

 Experiments were limited to a five-state
 system. For simplicity, B(0) was set equal

 to the vector (A1(O))T, which is equivalent
 to investigating a cohort of newcomers at
 t=0. Five experimental values of B (0)
 were used, [1,0,0,0,0] . ... [0,0,0,0,1], so that
 the entire cohort initially was located in a
 single state.12

 The dS generator function chosen for these
 experiments was suggested by results of em-
 pirical research (discussed below). It was
 the geometric sequence

 dS=I-(- I )d (I-,S)1 a> (15)
 a

 which clearly satisfies both conditions of
 (12.4). Note that (12.5) and (15) yield

 dM-(1I )d-lLSR. (16)
 a

 The effect of this function is seen more
 clearly by reexpressing (15) as the equiva-
 lent recursive equation

 dS-d-lS+ I( I-d1S ) . ( 17 )
 a

 That is, with each increment of time, the
 probability of staying is increased by a fixed
 fraction, 1/a, of the remaining range, I-d-1S.
 Clearly, the larger the value of a, the slower
 the system ought to converge. Four experi-
 mental values were chosen, a=2, 4, 10, 20.
 Since these experiments were not concerned
 with attraction theories of mobility, R was
 loaded uniformly with the value .25 in the
 off-diagonal cells. In effect, this says that
 a mover is equally likely to go to any of
 the four potential destinations.

 Four values of a, five B (0) vectors and
 two 1P matrices generated 40 simulation
 experiments. The major value of these ex-
 periments was to provide insights into the
 convergence behavior of the system with
 respect to B(t) and P(t); to learn when

 12These values were used in anticipation of a
 need for independent simultaneous equations and in
 the suspicion that the limit of B(t) is independent
 of B (O).
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 and to what forms they converge and how
 these patterns are affected by initial condi-
 tions. Although it is impossible to reproduce
 the full set of experimental summaries in
 this space, partial results for eight experi-
 ments are displayed in Table 2. The only
 parameters that vary in these eight experi-
 ments are B(O) and a. The two B(O) vectors,

 labeled 1 and 5, load the cohort into states s,
 and s5 respectively at t=O. Results for each
 of the four experimental values of a are repro-
 duced in Table 2. Each column contains the
 major results of a single experiment. For ex-
 ample, the first column gives results for the
 inputs a=2 and B(O)=[1,O,O,O,Q]. Con-
 vergence was reached at t= 17. Although the
 entire cohort was located in state s1 at t=O,
 32.6 percent was in this state at t=17. The
 initial retention probability in this state was

 Ip1p(Q)=1p11=.5. At convergence time, the
 gross retention probability was almost unity,
 ,p11(17)=.999.

 A comparison of the first two columns of
 Table 2 shows vividly that the limit dis-
 tribution can be affected by the initial dis-
 tribution. To shift the initial location of the
 cohort from state s, to ss reduces the final
 proportion in s1 by a factor of nearly 10
 and increases it in S5 by a factor of about
 3.5. A continued comparison of this sort
 across columns of Table 2 makes it equally
 clear that the effects of initial conditions
 disappear as a becomes large. That is, the

 slower dP converges in d to its limit, I, the
 more independent the limit distribution be-
 comes of initial conditions. The more rapid
 the convergence, the more elements become
 entrapped in an initial state.

 The lower block of Table 2 contains the
 final diagonal values of the gross transition
 matrix, dP. These results show that for
 sufficiently low values of a and high values
 of ipii, P(t) converges to the identity matrix,
 with the result that equilibrium becomes
 stability; that mobility ceases altogether.
 Again, as a increases sufficiently, P(t) con-
 verges to a matrix such that equilibrium
 does not imply an absence of motion.

 Although these results prove nothing in
 an analytical sense, they strongly suggest
 the following

 Conjecture.
 1. There exist a sufficiently large

 that lim B(t) is independent of
 t

 the initial distribution, B (0). (18)
 2. There exist a sufficiently small

 and 1S sufficiently large that lim
 t

 dp=I.

 Preliminary empirical results. Three stud-
 ies of migration in highly diverse popula-
 tions have yielded similar results, all of
 which lend partial support to the Cornell
 Model. Myers, McGinnis and Masnick have
 shown that migration patterns of selected

 TABLE 2. PARTIAL SUMMARY OF COMPUTER SIMULATION RESULTS WITH 1P
 DIAGONAL VECTOR= [.5, .6, .7, .8X .85]

 Input* a 2 2 4 4 10 10 20 20
 B(O) 1 5 1 5 1 5 1 5

 Output** lim(t) 17 18 26 26 114 114 305 298

 1 .326 .034 .129 .031 .022 .016 .046 .041
 2 .110 .046 .096 .055 .044 .037 .062 .054

 lim bi(t) i=3 .148 .062 .164 .092 .109 .091 .098 .088
 4 .194 .082 .268 .151 .306 .253 .258 .246
 5 .222 .776 .343 .671 .519 .603 .536 .571

 1 .999 .996 .493 .976 .735 .697 .531 .531
 2 .997 .997 .991 .987 .858 .848 .647 .645

 limp1t (t) i=3 .998 .998 .995 .992 .945 .942 .783 .782
 4 .999 .999 .997 .996 .982 .979 .925 .923
 5 .999 .999 .998 .999 .990 .992 .967 .967

 * a is the parameter of equation (15) that determines the rapidity of increase in dS. The larger the
 value of a, the slower the rate of increase. B(O) is the initial distribution vector. 1=[1, 0, 0, 0, 0J; 5=(0,
 0,0,0, 1].

 ** lim B(t) is the converged value of the distribution vector. lim p (t) is the limit value of the
 diagonal vector of lim P(t). Off diagonal elements are constant across columns within each row.
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 families in the state of Washington satisfy
 the Axiom of Cumulative Inertia during the
 period of the study. (Myers et al., 1967.)
 Migration histories obtained from 1,700
 Seattle high school students permitted in-
 cidence of migration to be examined as a
 function of prior residence. The authors
 conclude that "although the data are not
 ideal, they indicate a definite trend that
 tends to support the axiom of cumulative

 inertia." (Myers et al., 1967:125.)
 In a much more comprehensive study, P.

 Morrison, using a random sample of 5,000
 residential histories drawn from the popula-
 tion registration system of the Netherlands,
 concluded that these data were consistent
 with the axiom of cumulative inertia. (Mor-
 rison, 1967.) However, Morrison's analysis
 suggested that yet another temporal variable,
 biological age, also played a strong role in
 determining probabilities of migration.
 "First, within specific categories, the prob-
 ability of migrating declines as duration
 status increases. Second, the exact form of
 the relationship differs from one age to an-
 other suggesting that age is an interacting
 variable." (Morrison, 1967.) Morrison found
 that the quadratic family provided the best
 regression equations for migration proba-
 bilities on the log of prior duration. This is
 roughly consistent with the dP generator
 function used in the simulation experiments
 described above.

 K. Land replicated and extended Morri-
 son's study, using a stratified random sam-
 ple of 1,640 cases drawn from the Monter-
 rey, Mexico Metropolitan Area. (Land,
 1967). The relevant population consisted of
 resident males between the ages of 21 and
 60 years. Despite the cultural, economic
 and ecological differences between the Mexi-
 can and Dutch populations, Land's results
 were strikingly similar to Morrison's. The
 effects of duration of residence clearly op-
 erates in both samples in a manner that
 is consistent with the Axiom of Cumulative
 Inertia. In fact, they suggest that the Axiom
 might be specified with the statement that
 the strict monotone function is non-linear.

 Next steps. Clearly this is an interim re-
 port on work in progress. Analytical work
 remains to be done, primarily the character-
 ization of limiting behavior as a function of
 initial conditions. Empirical studies to date

 suggest that the Cornell Model may deserve
 further consideration, but at the same time,
 that it needs elaboration. In particular, the

 dP generator must be transformed to a mul-
 tivariate function of biological age as well
 as of the 1P matrix. Further research may
 show that position in the family life cycle,
 in addition to or instead of age, may need

 to be taken into account.
 It has been suggested that a competing

 model might yield results similar to, but

 more efficient than, those of the Cornell
 Model.'3 It may be that despite the results
 reported above, the Axiom of Cumulative
 Inertia is false; that, instead, individual
 psychological propensities to mobility that
 are invariant in time generate the observed
 differential migration patterns. This possi-

 bility needs to be checked out both by
 further simulation studies and by more em-
 pirical research. Finally, the Model needs
 further refinement in yet other ways. To
 convert it from a cohort to a general popu-
 lation model, birth and death processes must
 be built into it. Less trivially, Axiom (12.5)
 should be replaced by one that reflects hy-
 potheses about differential flows of movers.'4
 Only when these steps have been taken can
 the value, if any, of this mobility model be
 assessed.

 13 This suggestion was advanced initially by J. S.
 Coleman in personal conversation.

 4For example, in applications to migration the
 theories of Zipf and Stouffer can be built into the
 Cornell Model as further axioms on the ip matrix.
 See Anderson, 1955; Stouffer, 1940; Ter Heide,
 1963; and Zipf, 1946.
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 SOCIAL PARTICIPATION AND SOCIAL STATUS *

 ROBERT W. HODGE DONALD J. TREIMAN

 University of Chicago University of Wisconsin

 The relationships between various aspects of social participation-voluntary organization
 memberships, church attendance, and informal association with friends-and a number of
 social status and social background factors are examined using data from a representative
 sample of residents of a suburban county adjacent to Washington, D.C. In particular, the
 role of direct intergenerational transmission of participation patterns in determining levels
 of social participation is investigated by using the technique of path analysis to derive esti-
 mates of the effects of parents' participation patterns (for which no direct measurements are
 available) upon those of their offspring. For both males and females, membership in volun-
 tary organizations appears to be at least as strongly influenced by parent's level of participa-
 tion in such organizations as by respondent's socioeconomic status. In the case of church
 attendance, however, a strong direct intergenerational effect is found only for females, and
 not for males. Church attendance of males appears to be strongly influenced by their spouses'
 attendance patterns, a result which is consistent with the role of women as expressive leaders
 of families.

 Tia positive association between mem-
 bership in voluntary organizations and
 socioeconomic status is one of the best

 documented relationships in the sociological

 * This research was supported by a grant from
 the National Science Foundation (NSF #G85, "Oc-

 literature (a standard reference is Wright
 and Hyman, 1958). Numerous independent

 cupations and Social Stratification"), whose sup-
 port is gratefully acknowledged. We are greatly
 indebted to Norman M. Bradburn who made the
 data utilized in this report available to us. Although
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